Journals →  CIS Iron and Steel Review →  2017 →  #1 →  Back

ArticleName Study of structural transformation of hot-rolled carbon billets for high-strength ropes for responsible applications via the method of thermal analysis
DOI 10.17580/cisisr.2017.01.08
ArticleAuthor A. G. Korchunov, G. S. Gun, O. P. Shiryaev, K. G. Piviovarova

Nosov Magnitogorsk State Technical University (Magnitogorsk, Russia):

A. G. Korchunov, Dr. Eng., Prof., Vice-Rector on International Affairs
G. S. Gun, Dr. Eng., Prof., Advisor of the Rector
K. G. Pivovarova, Cand. Eng., Associate Prof., Chair of Materials Processing Technologies, e-mail:


Magnitogorsk Hardware and Metallurgical Plant “MMK-Metiz” (Magnitogorsk, Russia):

O. P. Shiryaev, Director


The method of differential scanning calorimetry (DSC) has been used for examination of structural transformations (forming and decomposition of austenite) in hot-rolled highcarbon steel 80. All three stages of forming of homogeneous austenite can be observed distinctly on the DSC heating curve for this steel. It was established that austenite transformation during continuous cooling (with rates 10 and 50 °/min) occurs in correspondence with the type of carbide-ferrite mixture, with extraction of α-phase of one morphological structure. The critical points at steel 80 heating are determined. Influence of cooling rate on shift of the Ас1 and Ас3 points is shown. Necessity of usage of high temperatures in austenitization furnace to provide wire rod temperature at the furnace exit in the range 930–980 °С is confirmed.

The study was financially supported by Ministry of Education and Science of the Russian Federation within the scope of accomplishment of multiple-purpose project on creation of modern high-tech production with the participation of higher education institution (Contracts No. 02.G25.31.0178 dated 01.12.2015; No. МК204895 dated 27.07.2015).

keywords Shot-rolled steel, structural and phase transformations, critical points, differential scanning calorimetry, DSC curves

1. Chukin D. M., Ishimov A. S., Zherebtsov M. S. Usage of GLEEBLE 3500 complex for determination of critical points in microalloyed steek 80P. Mezhdunarodnyi nauchno-issledovatelskiy zhurnal. 2012. No. 5. pp. 131–133.
2. Zilnyk K. D. et al. Martensitic transformation in Eurofer-97 and ODS-Eurofer steels: A comparative study. Journal of Nuclear Materials. 2015. Vol. 462. pp. 360–367.
3. Raju S. et al. A study on martensitic phase transformation in 9Cr–1W–0,23V–0,063Ta–0,56Mn–0,09C–0,02N (wt.%) reduced activation steel using differential scanning calorimetry. Journal of Nuclear Materials. 2010. Vol. 405. pp. 59–69.
4. Chandravathi K. S. et al. Effect of isothermal heat treatment on microstructure and mechanical properties of reduced activation ferritic martensitic steel. Journal of Nuclear Materials. 2013. Vol. 435. pp. 128–136.
5. Vdovin K. N., Lisovskaya M. A., Pivovarova K. G. The use of thermal analysis to study the structure and properties of roll steels. Metal Science and Heat Treatment. 2014. Vol. 56. pp. 302–305.
6. Grebenkov S. A., Skudnov V. A., Shatsov А. А., Kleiner L. M. Deformation strengthening of low-alloyed martensite steels of the system Cr-Mn-Ni-Mo-V-Nb. Proceedings of Nizhny Novgorod State Technical University n. a. R. E. Alekseev. 2014. No. 3 (105). pp. 228–238.
7. Shiryaev O. P. MMK-Metiz: saving, enlargement, modernization. Chernye metally. 2013. No. 10. pp. 24–26.
8. Vedeneev A. V., Ezhov V. V., Kuzmenko A. I. The module of 4-fold twisting for increase of productivity of rope machines. Chernye metally. 2013. No. 10. pp. 48–52.
9. Sukhorukov V. V., Vorontsov A. N., Volokhovskiy V. Yu. Control of hoisting rope wear for hot metal cranes of metallurgical enterprises. Chernye metally. 2013. No. 10. pp. 56–60.
10. Gadeev D. V. Investigations of phase transformations using the methods of structural and thermal analysis in dual-phase alloys on titanium base : Dissertation … of Candidate of Engineering Sciences. Ural Federal University. Ekaterinburg. 2012. 24 p.
11. Wendlandt U. Thermal methods of analysis. Мoscow : Mir, 1979. 520 p.
12. Zhu Y. T., Devletian J. H. Determination of equilibrium solid-phase transition temperature using DTA. Metallurgical and Materials Transactions A. 1991. Vol. 22. No. 9. pp. 1993–1998.
13. Zhu Y. T., Devletian J. H., Manthiram A. Application of differential thermal analysis to solid-solid transitions in phase diagram determination. J. Phase Equilibria. 1994. Vol. 15. No. 1. pp. 37–41.
14. Illarionov A. G. et al. Development of the techniques for determination of the complete polymorphic transformation temperature for dual-phase titanium alloy using the method of thermal analysis. Nauchno-tekhnicheskyi zhurnal “Titan”. 2010. No. 1. pp. 24–30.
15. Zhuravlev L. G., Filatov V. I. Physical methods of investigations of metals and alloys. Chelyabinsk : Izdatelstvo Yuzhno-Uralskogo Gosudarstvennogo Universiteta. 2004. 165 p.
16. Belalov Kh. N. et al. Steel wire. Magnitogorsk : Izdatelstvo Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G. I. Nosova. 2011. 672 p.
17. Taleff E. M., Lewandowski J. J., Pourladian B. Microstructure-Property Relation-ships in Pearlitic Eutectoid and Hypereutectoid Carbon Steels. Journal of Materials. 2002. pp. 25–30.
18. Verhoeven J. D., Gibson E. D. The Divorced Eutectoid Transformation in Steel. Metall Mater. 1998. Vol. 29A. pp. 1181–1189.
19. Raju S. et al. Measurement of transformation temperatures and specific heat capacity of tungsten added reduced activation ferritic-martensitic steel. Journal of Nuclear Materials. 2009. Vol. 389. pp. 385–393.

Full content Study of structural transformation of hot-rolled carbon billets for high-strength ropes for responsible applications via the method of thermal analysis