Journals →  Tsvetnye Metally →  2017 →  #4 →  Back

MATERIALS SCIENCE
ArticleName Nitridation of titanium surface by electric charge treatment
DOI 10.17580/tsm.2017.04.09
ArticleAuthor Pyachin S. A., Burkov A. A.
ArticleAuthorData

Institute of Materials Science of Khabarovsk Science Center of Far Eastern Branch of Russian Academy of Sciences, Khabarovsk, Russia:

S. A. Pyachin, Deputy Director for Science, Head of Laboratory of Functional Materials and Coatings, e-mail: pyachin@mail.ru
A. A. Burkov, Researcher

Abstract

This paper shows the results of surface modification of titanium alloy VT20 by electric charge treatment in various gases such as argon, nitrogen and air. The composition and structure of modified surface layers were studied by optical microscopy, scanning electron microscopy and X-ray diffraction. Anode mass decreases and cathode mass increases at electric-discharge treatment, which is the evidence of metal transfer from anode to cathode. With increasing the discharge-pulse length from 100 to 500 μs, the erosion rate of anode increases, therefore the weight of cathode gain increases. The mass transfer coefficient reaches 80–85%. The thickness of the modified surface layers is 10 to 70 μm. The effects of electrical discharges in nitrogencontaining gases cause the saturation of titanium-alloy surface with titanium nitride. As increasing the duration of discharge impulses, the concentration of TiN in the surface layers of titanium alloy increases. The microhardness of the modified surfaces is higher in 9–16 times in comparison with the microhardness of untreated titanium substrate. The microhardness decreases gradually, moving from the surface deep into titanium alloy. The surface layer, obtained by the electric charge treatment in air, is a little harder than it processed in nitrogen. When the discharge-pulse length exceeds 300 μs, titanium oxide TiO is formed on the surface of the alloy processed in air, therefore the microhardness of this layer decreases. Testing the microabrasive wear of the surface layers according to the “rotating sphere–plate” method, established that the surface of titanium alloy treated in argon has a heterogeneous structure with high density of pores, and is eroded quickly during wear. At friction, the surfaces of titanium alloy processed in air and nitrogen are destroyed slower in factor of 3–5 compared to the unmodified
alloy and the sample prepared by the discharge treatment in argon due to hardening by titanium nitride.

keywords Electric charge alloying, electrical discharge, titanium, titanium nitride, microstructure, microhardness, wear resistance
References

1. Boyer R. R. An overview on the use of titanium in the aerospace industry. Materials Science and Engineering: A. 1996. Vol. A213. pp. 103–114.
2. Ezugwu E. O., Wang Z. M. Titanium alloys and their machinability — a review. Journal of Materials Processing Technology. 1997. Vol. 68. pp. 262–274.
3. Liu L., Ernst F., Michal G. M., Heyer A. H. Surface hardening of Ti alloys by gas-phase nitridation : kinetic control of the nitrogen surface activity. Metallurgical and Materials Transactions: A. 2005. Vol. 36A. pp. 2429–2434.
4. Budzynski P., Youssef A. A., Sielanko J. Surface modification of Ti – 6Al – 4V alloy by nitrogen ion implantation. Wear. 2006. Vol. 261. pp. 1271–1276.
5. Sharkeev Yu. P., Bull S. J., Perry A. J., Klingenberg M. L., Fortuna S. V., Michler M., Manory R. R., Shulepov I. A. On high dose nitrogen implantation of PVD titanium nitride. Surface and Coating Technology. 2006. Vol. 200. pp. 5915–5920.
6. Qian J., Farokhzadeh K., Edrisy A. Ion nitriding of a near- titanium alloy: Microstructure and mechanical properties. Surface and Coatings Technology. 2014. Vol. 258. pp. 134–141.
7. Yeh T.-Sh., Wu J.-M., Hu L.-J. The properties of TiN thin films deposited by pulsed direct current magnetron sputtering. Thin Solid Films. 2008. Vol. 516. pp. 7294–7298.
8. Jeyachandran Y. L., Narayandass S. K., Mangalaraj D., Areva S., Mielczarski J. A. Properties of titanium nitride films prepared by direct current magnetron sputtering. Materials Science and Engineering: A. 2007. Vol. 445/446. pp. 223–236.
9. Hovsepian P. Eh., Sugumaran A. A., Purandare Y., Loch D. A. L., Ehiasarian A. P. Effect of the degree of high power impulse magnetron sputtering utilisation on the structure and properties of TiN films. Thin Solid Films. 2014. Vol. 562. pp. 132–139.
10. Tahara H., Ando Y. Study of titanium nitride deposition by supersonic plasma spraying. Vacuum. 2008. Vol. 83. pp. 98–101.
11. Ponon N. K., Appleby D. J. R, Arac E., King P. J., Ganti S., Kwa K. S. K., O’Neill A. Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films. Thin Solid Films. 2015. Vol. 578. pp. 31–37.
12. El-Hossary F. M., Negm N. Z., Abd El-Rahman A. M., Raaif M., Seleem A. A., Abd El-Moula A. A. Tribo-mechanical and electrochemical properties of plasma nitriding titanium. Surface and Coatings Technology. 2015. Vol. 276. pp. 658–67.
13. Labudovic M., Kovacevic R., Kmecko I., Khan T. I., Blecic D., Blecic Z. Mechanism of surface modification of the Ti – 6 Al – 4 V alloy using a gas tungsten arc heat source. Metallurgical and Materials Transactions: A. 1999. Vol. 30A. pp. 1597–1603.
14. Ohtsu N., Kodama K., Kitagawa K., Wagatsuma K. X-ray photoelectron spectroscopic study on surface reaction on titanium by laser irradiation in nitrogen atmosphere. Applied Surface Science. 2009. Vol. 255. pp. 7351–7356.
15. Ohtsu N., Kodama K., Kitagawa K., Wagatsuma K. Comparison of surface films formed on titanium by pulsed Nd:YAG laser irradiation at different powers and wavelengths in nitrogen atmosphere. Applied Surface Science. 2010. Vol. 256. pp. 4522–4526.
16. Lahoz R., Espinos J. P., de la Fuente G. F., Gonzalez-Elipe A. R. «In situ» XPS studies of laser induced surface cleaning and nitridation of Ti. Surface and Coating Technology. 2008. Vol. 202. pp. 1486–1492.
17. Yilbas B. S., Arif A. F. M., Karatas C. Laser gas assisted nitriding of Ti – 6 Al – 4 V alloy and residual stress analysis. Surface Engineering. 2009. Vol. 25. pp. 228–234.
18. Abboud J. H. Effect of processing parameters on titanium nitrided surface layers produced by laser gas nitriding. Surface and Coatings Technology. 2013. Vol. 214. pp. 19–29.
19. Lazarenko B. R. Electrical method of treatment of metals, alloys, and other conducting materials. Elektronnaya obrabotka materialov. 1967. No. 5. pp. 3–19.
20. Johnson R. N., Sheldon G. L. Advances in the electric charge deposition coating process. Journal of Vacuum Science & Technology: A. 1986. Vol. 4. pp. 2740–2746.
21. Zamulaeva E. I., Levashov E. A., Kudryashov A. E., Vakaev P. V., Petrzhik M. I. electric charge coatings deposited onto an Armco iron substrate with nano- and microstructured WC – Co electrodes: Deposition process, structure, and properties. Surface and Coating Technology. 2008. Vol. 202. pp. 3715–3722.
22. Li Z., Gao W., He Y. Protection of a Ti3Al – Nb alloy by electro-spark deposition coating. Scripta Materialia. 2001. Vol. 45. pp. 1099–1105.
23. Galinov I. V., Luban R. B. Mass transfer trends during electric charge alloying. Surface and Coating Technology. 1996. Vol. 79. pp. 9–18.
24. Loginov P. A., Levashov E. A., Potanin A. Yu., Kudryashov A. E., Manakova O. S., Shvyndina N. V., Sukhorukova I. V. Sintered Ti – Ti3P – CaO electrodes and their application for pulsed electric charge treatment of titanium. Ceramics International. 2016. Vol. 42, No. 6. pp. 7043–7053.
25. Pyachin S. A., Burkov A. A. Oxidation of low-carbon steel in the process of electric discharge treatment in air. Metalloobrabotka. 2012. No. 4. pp. 18–22.
26. Etcherssahar E., Bars J. P., Debuigne J. The Ti – N system: Equilibrium between the d, e and a phases and the conditions of formation of the lobier and marcon metastable phase. Journal of the Less Common Metals. 1987. Vol. 134, No. 1. pp. 123–139.
27. Gordienko P. S., Verkhoturov A. D., Dostovalov V. A., Zhevtun I. G., Panin E. S., Konevtsov L. A., Shabalin I. A. Electrophysical model of electrode erosion during the unit impulse function. Elektronnaya obrabotka materialov. 2011. Vol. 47, No. 3. pp. 15–27.
28. Hasçalk A., Çayda U. Applied Surface Science. Electrical discharge machining of titanium alloy. 2007. Vol. 253, No. 22. pp. 9007–9016.

Language of full-text russian
Full content Buy
Back