ArticleName |
Influence of granulometric composition on leucoxene concentrate processing with titanium tetrachloride obtaining (Yaregskoe deposit) |
ArticleAuthorData |
A. V. Topchiev Institute of Petrochemical Synthesis RAS, Moscow, Russia:
K. L. Zanaveskin, Senior Researcher, e-mail: zakon82@mail.ru
L. N. Zanaveskin, Head of a Sector, e-mail: zanaveskin@ips.ac.ru
Karpov Scientific Research Institute of Physics and Chemistry, Obninsk, Russia: A. N. Maslennikov, Junior Researcher, e-mail: anmaslennikoff@gmail.com M. N. Makhin, Senior Researcher, e-mail: makhin.maxim@gmail.com |
Abstract |
More than a half of Russian titanium ore reserves is placed in Yaregskoe oiltitanium deposit (Komi Republic). As a result of this ore concentration, leucoxene concentrate is obtained, containing up to 65% of TiO2 and ~30% of SiO2. Leucoxene is a titanium carrier in concentrate. It is impossible to refinine the concentrate to >65% of TiO2 by physical separation methods. We considered the peculiarities of the process of autoclave leaching concentration of such concentrate and experimentally proved, that the concentrated product is suitable for reprocessing with TiCl4 obtaining in boiling layer reactors. Physical properties of raw materials (including its durability, shape and particle size) are important for the process of reduction chlorination in boiling layer reactors. We experimentally investigated the influence of leucoxene concentrate grain sizes on its concentration process by leaching using water solution NaOH, and on the concentrated raw materials chlorination in boiling layer reactor. Granulometric composition of autoclave concentrate makes a significant influence on its processing with TiCl4 obtaining in boiling layer reactor. On the one hand, application of ground raw materials allows the slight increasing of the reaction rate, on the other — leads to increasing of dust burden of TiO2 from reaction mass. At the same time, the grain size of quartz-leucoxene concentrate has almost no influence on its processing rate with obtaining of autoclave concentrate by leaching method. It is better to use the quartz-leucoxene concentrate with natural grain size for decreasing of TiO2 losses. The investigation was carried out with the support of the grant of Russian Scientific Fund (project No. 15-13-00171). |
keywords |
Leaching, chlorination, rutile, titanium tetrachloride, boiling layer, leucoxene, autoclave concentrate, quartz-leucoxene concentrate, Yaregskoe deposit |
References |
1. Available at: http://www.mnr.gov.ru/upload/iblock/914/Report2014.pdf (in Russian) 2. Zanaveskin K. L., Maslennikov A. N., Makhin M. N., Zanaveskin L. N. Osobennosti khimicheskogo i mineralnogo sostava chernovogo kvarts-leykoksenovogo kontsentrata Yaregskogo mestorozhdeniya (Special features of the Yaregskoye deposit quartz-leucoxene rougher concentrate chemical and mineral composition). Obogashchenie Rud = Mineral processing. 2015. No. 5. pp. 25–32. DOI: 10.17580/or.2015.05.05 3. Fedorova M. N. Khimicheskaya dovodka titanovogo kontsentrata putem avtoklavnogo vyshchelachivaniya kremnievoy kisloty (Chemical refining of titanium concentrate by autoclave leaching of silicon acid). Titan i ego splavy (Titanium and its alloys). Moscow : Publishing House of USSR Academy of Sciences, 1963. Iss. 9. pp. 36–41. 4. Zanaveskin K. L., Lukashev R. V., Maslennikov A. N., Terekhov A. V., Makhin M. N., Zanaveskin L. N. Preparation of porous materials from a leucoxene concentrate. Inorganic Materials. 2016. Vol. 52, No. 8. pp. 796–801. DOI: 10.1134/S0020168516080185 5. Zanaveskin K. L., Maslennikov A. N., Dmitriev G. S., Zanaveskin L. N. Avtoklavnaya pererabotka kvarts-leykoksenovogo kontsentrata Yaregskogo mestorozhdeniya (Autoclave processing of quartz-leucoxene concentrate (Yaregskoe deposit)). Tsvetnye Metally = Non-ferrous metals. 2016. No. 3. pp. 49–56. DOI: 10.17580/tsm.2016.03.08 6. Moodley S., Eric R. H., Kucukkaragoz C., Kale A. Chlorination of Titania Feedstocks. 3rd International Symposium on High-Temperature Metallurgical Processing. Hoboken : John Wiley & Sons, Inc., 2012. pp. 93–104. DOI: 10.1002/9781118364987.ch12 7. Barin I., Schuler W. On the kinetics of the chlorination of titanium dioxide in the presence of solid carbon. Metallurgical and Materials Transactions B. 1980. No. 11 (2). pp. 199–207. DOI: 10.1007/BF02668402 8. Landsberg A., Hoatson C. L., Block F. E. The chlorination kinetics of zirconium dioxide in the presence of carbon and carbon monoxide. Metallurgical and Materials Transactions. 1972. Vol. 3. pp. 517–523. DOI: 10.1007/BF02642057 9. Bergholm A. Chlorination of rutile. Transaction of American Institute of Mining, Metallurgical and Petroleum Engineers. 1961. Vol. 221 (121). pp. 1121–1128. DOI: 10.1007/BF02664695 10. Stefanyuk S. L., Morozov I. S. Kinetika i mekhanizm khlorirovaniya mineralov (loparit, pirokhlor, tsirkon i evksenit) (Kinetics and mechanism of mineral chlorination (lopartie, pyrochlore, zyrconium and euxenite)). Zhurnal prikladnoy khimii = Russian Journal of Applied Chemistry. 1965. Vol. 38, Iss. 4. pp. 729–735. 11. Pasquevich D. M., Amorebieta V. T. Mass spectrometric study of volatile products during the carbochlorination of zirconia. Berichte der Bunsengesellschaft für physikalische Chemie. 1992. Bd. 96. S. 530–533. DOI: 10.1002/bbpc.19920960403 12. Wendell E., Dunn J. R. High temperature chlorination of titanium bearing minerals : Part IV. Metallurgical transactions B. 1979. Vol. 10B. pp. 271–277. DOI: 10.1007/BF02652471 13. Amorebieta V. T., Colussi A. J. Direct study of the catalytic decomposition of chlorine and chloromethanes over carbon films. International Journal of Chemical Kinetics. 1985. Vol. 17. pp. 849–858. DOI: 10.1002/kin.550170806 |