ArticleName |
Dependence of spectral transmittance of thallium halide crystals on growing atmosphere. Part 3
|
ArticleAuthorData |
State Scientific-Research and Project Institute of Rare-Metal Industry “Giredmet”, Moscow, Russia:
I. S. Lisitskiy, Senior Researcher G. V. Polyakova, Senior Researcher, e-mail: gradan@mail.ru V. F. Golovanov, Senior Researcher M. S. Kuznetsov, Head of Laboratory of High-Pure Halide Materials for Optics |
Abstract |
This paper investigates the dependence of spectral transmittance of thallium halide crystals KRS-5 (КРС-5) (TlBr – TlI) on growing atmosphere. The purpose of experiments is the choice of conditions, minimizing the decomposition products formation on the final stage of crystal obtaining for laser engineering tools. Cation and anion impurities are intensively removed on the stages of salt purification before growing. Decomposition products are removed and reproduced on each stage and activate the thallium halide dissociation process. Such impurities appear in the melt KRS-5 with interaction of TlI with oxygen and water vapors. The formed thallium oxides are introduced into the growing crystal, decreasing its glassiness and causing the decomposition process, which leads to the failure of optical elements of laser system. According to the results of the earlier investigations, decomposition processes may be under the effect of the crystal-growing atmosphere. Growing in vacuum allows to obtain the crystals KRS-5 with high spectral passing. This paper shows the choice of the atmosphere, providing the obtaining of low light scattering coefficients (which do not change in time), in the visible part of spectrum and laser irradiation absorption in the range of 10 μm. It is the halogenating atmosphere, formed by iodine vapors. This work was carried out with the financial support of the Ministry of Education and Science of Russian Federation. Federal Target Program “Investigations and developments on the priority ways of development of the scientific-technical complex of Russia for 2014–2020” within the project “Development of the technology of obtaining of new optical materials for tools and apparatuses of laser and/or infrared technics”. Agreement No. 14.576.21.0054. Unique identifier of applied scientific investigations (project) RFMEFI57614X0054. |
References |
1. Rogalin V. E. Opticheskaya stoykost prozrachnykh materialov dlya moshchnykh CO2-lazerov : dissertatsiya … kandidata fiziko-matema ticheskikh nauk (Optical resistance of transparent materials for powerful CO2-lasers : Dissertation … of Candidate of Physical and Mathematical Sciences). Moscow : A. M. Prokhorov General Physics Institute, 2010. 155 p. 2. Korsakov A., Zhukova L., Korsakova E., Zharikov E. Structure modeling and growing AgClxBr1–x, Ag1–xTlxBr1–xIx, and Ag1–xTlxClyIzBr1–y–z crystals for infrared fiber optics. Journal of Crystal Growth. 2014. Vol. 386. pp. 94–99. 3. Onodera T., Hitomi K., Muroi O. Characterization of Thallium Bromide Radiation Detectors. Nuclear Instruments and Methods in Physics Research Section A. 2006. Vol. 568. pp. 129–133. 4. Kažukauskas V., Jurgilatis A., Vaitkus J. V., Gostilo V., Shorohov M. Photoelectrical Phenomena and Current Kinetics in TlBr. Material science (Medziagotyra). 2008. Vol. 14, No. 2. pp. 97–100. 5. Gazizov I. M., Zaletin V. M., Kukushkin V. M., Khrunov V. S. Current Response of a TlBr Detector to Cs-137 gamma-Ray Radiation. Semiconductors. 2011. Vol. 45, No. 5. pp. 636–640. 6. Shulgin B. V., Kruzhalov A. V., Petrov V. L. Detector materials and devices for radiation monitoring. News of higher reduction institutions. Physic. 2012. Vol. 51. pp. 205–208. 7. Zukova L., Korsakov A., Chazov A. Photonic crystalline IR fibers for the spectral range of 2–40 μM. Applied Optics. 2012. Vol. 51, No. 13. pp. 2414– 2418. 8. Plotnichenko V. G., Sokolov V. O., Philippovskiy D. V., Lisitsky I. S., Kouznetsov M. S., Zaramenskikh K. S., Dianov E. M. Near infrared luminescence in TlCl:Bi crystal. Optics letters. 2013. Vol. 38, No. 3. pp. 362–364. 9. Tuller H. L., Bishop S. R. Ionic junction for radiation detector. Patent USA, No. US2012153295 (A1). Massachusetts Institute of Technology. Applied: 25.02.2011. Published: 21.06.2012. 10. Bishop S. R., Tuller H. L. Ionic junction for radiation detectors and method of forming ionic junction. Patent USA, No. WO2012021190 (A3). Massachusetts Institute of Technology. Published: 05.04.2012. 11. Lisitskiy I. S., Polyakova G. V., Golovanov V. F., Kuznetsov M. S. Vliyanie rezhimov vyrashchivaniya kristallov TlCl – TlBr i TlBr – TlI na strukturnoe sovershenstvo kristallov (Influence of TlCl – TlBr and TlBr – TlI crystal growing modes on structural perfection of crystals). Tsvetnye Metally = Nonferrous metals. 2015. No. 12. pp. 64–70. DOI: http://dx.doi.org/10.17580/tsm.2015.12.12 12. Lisitskiy I. S., Polyakova G. V., Golovanov V. F., Kuznetsov M. S. Zavisimost spektralnogo propuskaniya kristallov galogenidov talliya ot atmosfery vyrashchivaniya. Chast I (Dependence of spectral transmittance of thallium halide crystals on growing atmosphere. Part I). Tsvetnye Metally = Non-ferrous metals. 2016. No. 6. pp. 74–79. DOI: http://dx.doi.org/10.17580/tsm.2016.06.10 13. Lisitskiy I. S., Polyakova G. V., Golovanov V. F., Kuznetsov M. S. Zavisimost spektralnogo propuskaniya kristallov galogenidov talliya ot atmosfery vyrashchivaniya. Chast 2 (Dependence of spectral transmittance of thallium halide crystals on growing atmosphere. Part 2). Tsvetnye Metally = Nonferrous metals. 2016. No. 7. pp. 59–63. DOI: http://dx.doi.org/10.17580/tsm.2016.07.07 14. Belousov A. P., Dianov E. M., Lisitskiy I. S., Nesterova T. M., Plotnichenko V. G., Sysoev V. K. Monokristally galogenidov talliya s opticheskimi poteryami menee 10 dB/km (Monocrystals of thallium halides with optical losses less than 10 dB/km). Kvantovaya elektronika = Quantum Electronics. 1982. Vol. 9, No. 4. pp. 796–798. |