Journals →  Tsvetnye Metally →  2016 →  #4 →  Back

MATERIALS SCIENCE
ArticleName Sufficiency principle and achievement optimal structure in light alloys
DOI 10.17580/tsm.2016.04.11
ArticleAuthor Merkulova S. M., Bochvar S. G.
ArticleAuthorData

All-Russia Institute of Light Alloys, Moscow, Russia:

S. M. Merkulova, Senior Researcher, e-mail: sveta.merkulova.68@mail.ru
S. G. Bochvar, Leading Engineer

Abstract

There was set a certain range of tasks for the products manufacturing with a required (given) level of properties and, as a result, with optimal structure, which may be solved with the lower costs, with application of cheaper technologies. This article is devoted to the development of the sufficiency principle (for example: cooling rate during crystallization). As applied to the high-strength deformed alloys, the main point of this principle shows the fact that reaching the cooling rate, where the primary crystallization of intermetallides is successfully pressed, makes its following increasing unsuitable, if it requires the additional costs. Significant grinding of primary silicon crystals and other proeutectoid constituents is possible due to the complex modifying processing, combining the introduction of active modifiers, and cavitation processing of melt. This is called a principle of cooling ratio sufficiency. Scandium content in alloys may be decreased during the alloying process due to the introduction of transition and rare-earth metals, saving the set level of properties. This is called a sufficiency principle in the alloying process. In certain cases, increased modification, leading to the significant grinding of grains, has a range of disadvantages. In this case, there was found the decreasing of mechanical properties of pressed products.

keywords Sufficiency principle, aluminium alloys, cooling ratio during crystallization, grain grinding, intermetallides
References

1. Bochvar S. G., Belotserkovets V. V., Dobatkin V. I. Izotermicheskie vyderzhki v zhidko-tverdoy oblasti alyuminievo-tsirkonievykh splavov s pervichnoy kristallizatsiey intermetallidov (Isothermal holdings in liquid-solid area of aluminium-zirconium alloys with primary crystallization of intermetallides). Tekhnologiya legkikh splavov = Technology of Light Alloys. 1996. No. 3. pp. 41–45.
2. Plavka i lite alyuminievykh splavov : spravochnik (Smelting and casting of aluminium alloys : reference book). Second edition. Moscow : Metallurgiya, 1983. 351 p. (in Russian)
3. Bommareddy A., Quadir M. Z., Ferry M. Time and temperature regime of continuous grain coarsening in an ECAP-processed Al (0.1 wt.%Sc) alloy. Journal of Alloys and Compounds. 2012. Vol. 527. pp. 145–151.
4. Zakharov V. V. Osobennosti kristallizatsii alyuminievykh splavov, legirovannykh skandiem (Peculiarities of crystallization of scandium-doped aluminium alloys). Metallovedenie i termicheskaya obrabotka metallov = Metal Science and Heat Treatment. 2011. No. 9. pp. 12–18.
5. Schloz J. D. Fundamentals of Grain Refining Aluminium Alloys. Light Metal Age. 2010. No. 8. pp. 30–37.
6. Eskin G. I. K usloviyam formirovaniya nedendritnoy struktury v slitkakh i granulakh legkikh i zharoprochnykh nikelevykh splavov (To the conditions of non-dendrite structure formation in ingots and granules of light and heatresistant nickel alloys). Tekhnologiya legkikh splavov = Technology of Light Alloys. 2013. No. 4. pp. 147–159.
7. Bochvar S. G. Issledovanie zakonomernostey formirovaniya izmelchennoy struktury slitkov alyuminievykh splavov i na ikh osnove razrabotka kompleksnoy tekhnologii vnepechnogo modifitsirovaniya s primeneniem kavitatsionnoy obrabotki : avtoreferat … doktora tekhnicheskikh nauk (Investigation of regularities of the formation of grinded structure of aluminium alloy ingots and development of the complex secondary modification technology with application of cavitation processing on their basis: thesis of inauguration of Dissertation … of Doctor of Engineering Sciences). Moscow : All-Russia Institute of Light Alloys, 2012. 50 p.
8. Elagin V. I., Zakharov V. V., Rostova T. D. O nedendritnoy strukture slitkov i ee vliyanii na svoystva polufabrikatov iz alyuminievykh splavov (About the non-dendrite structure of ignots and its influence on the properties of halffinished aluminium alloy products). V sbornike: Metallovedenie, lite i obrabotka splavov (In the collection: Metal science, casting and alloy processing). Moscow : All-Russia Institute of Light Alloys, 1995. pp. 6–16.
9. Zakharov V. V., Fisenko I. A. Ob ekonomii skandiya pri legirovanii im alyuminievykh splavov (About the scandium economy during its doping of aluminium alloys). Tekhnologiya legkikh splavov = Technology of Light Alloys. 2013. No. 4. pp. 52–60.
10. Eskin G. I., Pimenov Yu. P. Poluchenie deformirovannykh polufabrikatov iz zaevtekticheskikh siluminov (Obtaining of deformed half-finished products from hypereutectic silumins). Tekhnologiya legkikh splavov = Technology of Light Alloys. 1996. No. 2. pp. 51–56.
11. Dobatkin V. I., Elagin V. I., Fedorov V. M. Bystrozakristallizovannye alyuminievye splavy (Rapidly crystallized aluminium alloys). Moscow : All-Russia Institute of Light Alloys, 1995. 341 p.
12. Wu S., Tu X., Fukuda Y., Kanno T., Nakae H. Modification mechanism of hypereutectic Al – Si alloy with P – Na addition. Transactions of Nonferrous Metals Society of China 2003. No. 6. pp. 1285–1289.
13. Zuo M., Liu X., Dai H., Liu X. Al – Si – P master alloy and its modification and refinement performance on Al – Si alloys. Rare Metals. 2009. No. 4. pp. 412–417.
14. Pimenov Yu. P., Tararyshkin V. I., Eskin G. I. Optimizatsiya tekhnologii plavki i modifitsirovaniya zaevtekticheskikh siluminov (Optimization of the technology of smelting and modification of hypereutectic silumins). Tekhnologiya legkikh splavov = Technology of Light Alloys. 1997. No. 3. pp. 17–23.
15. Komarov S., Ishiwata Y., Oda K. Refinement of primary silicon in casting aluminium alloys via application of ultrasonic vibrations to DC process. Proceedings of the 12th International Conference on Aluminium Alloys, September 5–9, 2010. Yokohama, Japan. Tokyo : The Japan Institute of Light Metals, 2010. pp. 652–657.
16. Ünal N., Çamurlu H. E., Koçak S., Düztepe G. Effect of External Ultrasonic Treatment on Hypereutectic Cast Aluminium-Silicon Alloy. International Journal of Cast Metals Research. 2012. Vol. 25, No. 4. pp. 246–250.
17. Dobatkin S. V., Rokhlin L. L., Dobatkina T. V., Lukyanova E. Ya. Struktura i mekhanicheskie svoystva splava sistemy Mg – Y – Gd – Zr posle intensivnoy plasticheskoy deformatsii (Structure and mechanical properties of the alloy of system Mg – Y – Gd – Zr after intensive plastic deformation). Tekhnologiya legkikh splavov = Technology of Light Alloys. 2015. No. 2. pp. 23–29.
18. Segal V. M., Shchukin V. Ya. Ustroystvo dlya uprochneniya materialov davleniem (Pressure metal hardening unit). Patent RF, No. 492780. Applied : June 11, 1973. Published : November 25, 1975. Bulletin No. 43.
19. Panov E. I. Novoe o mekhanizme strukturoobrazovaniya i povysheniya plastichnosti zaevtekticheskikh siluminov v usloviyakh poperechno-vintovoy prokatki (New information about the mechanism of structure formation and increasing of plasticity of hypereutectic silumins in helical rolling conditions). V sbornike: Perspektivnye tekhnologii legkikh i spetsialnykh splavov. K 100-letiyu so dnya rozhdeniya akademika A. F. Belova (Collection: Prospective technologies of light and special alloys. To the 100 anniversary of Academician A. F. Belov). Moscow : Fizmatlit, 2006. pp. 161–179.
20. Estrin Y., Janecek M., Raab G. I., Valiev R. Z., Zi A. Severe Plastic Deformation as a Means of Producing Ultra-Fine-Grained Net-Shaped Micro ElectroMechanical Systems Parts. Metallurgical and Materials Transactions: A. 2007. Vol. 38, No. 9. pp. 1906–1909.
21. Huang Y., Pragnell P. B. Continuous frictional angular extrusion and its application in the production of ultrafine-grained sheet metals. Scripta Materialia. 2007. Vol. 56. pp. 333–338.
22. Shcherbel R. D., Merkulova S. M. Izmelchenie zerennoy struktury v krupnogabaritnykh polosakh iz splava MA2-1pch za schet ispolzovaniya uvelichennoy sdvigovoy deformatsii pri pressovanii s malymi vytyazhkami (Grain structure grinding in large MA2-1pch (MA2-1пч) bars due to the use of increased shear deformation during the low drawings pressing). V sbornike tezisov “Bernshteynovskie chteniya po termomekhanicheskoy obrabotke metallicheskikh materialov k 95-letiyu so dnya rozhdeniya professora Bernshteyna M. L.” (Collection of the thesises “Bernshteyn readings of thermomechanical treatment of metallic materials to the 95-th anniversary of Professor M. L. Bernshteyn”). Moscow : MISiS, 2014. pp. 21–22.
23. Ovsyannikov B. F. Ostorozhno — modifitsirovanie zerna (Danger — modified grains). Tekhnologiya legkikh splavov = Technology of Light Alloys. 2015. No. 2. pp. 40–45.

Language of full-text russian
Full content Buy
Back