ArticleName |
Aluminium fluoride obtaining from aluminium production wastes |
ArticleAuthorData |
Irkutsk National Research Technical University, Irkutsk, Russia:
E. P. Rzhechitskiy, Senior Researcher of Innovation Technologies Department V. V. Kondratev, Head of Innovation Technologies Department A. I. Karlina, Chief Analyst of Scientific Effort Office
Siberian Federal University, Krasnoyarsk, Russia: S. G. Shakhray, Assistant Professor (Chair of Technosphere Safety of Mining and Metallurgical Production), e-mail: shahrai56@mail.ru |
Abstract |
This article identifies the main types of solid fluorine-carbon containing wastes which may be processed with obtaining aluminium fluoride AlF3. There was calculated the mass of excess electrolyte, forming in the conditions of use of electrolyzers with baked anodes and “dry” gas purification. Experimental data of aluminium fluoride obtaining from wastes are shown. Implementation of this technology may reduce the consumption of fresh AlF3 by 6–8 kg per a ton of metal, and scarce fluorite concentrate consumption. Ecological situation in aluminium smelter regions may be significantly improved. The main waste types in Soderberg aluminum technology are: gas purification dust and sludges, coal froth flotation tails, electrolyzer overhaul materials, nonprocessed part of coal froth, mechanical wastes (dust, etc.). Aluminum production in electrolyzers with baked anodes and “dry” gas purification form the following wastes: electrolyzer overhaul materials, small amount of coal froth and excess electrolyte (a new type of wastes). Sodium oxide (Na2O), contained in alumina, causes the formation of excess electrolyte. Authors used the results of the investigations, carried out within the Federal Target Program “Investigations and developments by the priority ways of development of scientific-technical complex of Russia for the period of 2014-2020”. Unique identifier of applied research and experimental developments is RFMEF I 5 7 7 1 5 X 0 1 9 0. |
References |
1. Savinova A. A. Problema ispolzovaniya uglerodftorsoderzhashchikh otkhodov Krasnoyarskogo alyuminievogo zavoda (Problem of use of carbon-fluorine containing wastes of Krasnoyarsk aluminium smelter). Poisk novykh putey : sbornik nauchnykh trudov aktsionernogo obshchestva “KRAZ” (Searching for new ways : collection of scientific proceedings of Krasnoyarsk aluminium smelter). Krasnoyarsk, 1994. pp. 33–45. 2. Drukarev V. A., Gupalo I. P., Burkat V. S. Snizhenie vydeleniya v atmosferu vrednykh veshchestv pri proizvodstve alyuminiya (Reduction of aluminium production discharges). Byulleten TsNIItsvetmeta = Bulletin of TsNIItsvetmet. 1979. No. 10. pp. 45–50. 3. Galkin N. P., Zaytsev V. A., Seregin M. B. Ulavlivanie i pererabotka ftorsoderzhashchikh gazov (Catching and processing of fluorine-containing gases). Moscow : Atomizdat, 1975. 240 p. 4. M. Yu. Komlev, V. V. Dorofeev. Sposob polucheniya kriolita (Cryolite obtaining method). Certificate of Authority USSR, No. 1801101. Published : March 07, 1993. 5. Kulikov B. P., Istomin S. P. Pererabotka otkhodov alyuminievogo proizvodstva (Aluminium production wastes processing). Krasnoyarsk : LLC “Klassik Tsentr”, 2004. 480 p. 6. Burkat V. S., Drukarev V. A. Sokrashchenie vybrosov v atmosferu pri proizvodstve alyuminiya (Reduction of aluminium production discharges). Saint Petersburg : LLC “Lyubavich”, 2005. 275 p. 7. Rzhechitskiy E. P., Kondratev V. V., Tenigin A. Yu. Tekhnologicheskie resheniya po okhrane okruzhayushchey sredy pri proizvodstve alyuminiya : monografiya (Technological solutions for the environmental protection during aluminium production : monograph). Irkutsk : Publishing House of Irkutsk State Technical University, 2013. 160 p. 8. Sobolev S. A., Sedykh V. I. Sovershenstvovanie tekhnologii regeneratsii ftora iz tverdykh otkhodov alyuminievogo proizvodstva (Improvement of the technology of fluorine regeneration from solid wastes of aluminium industry). Sbornik tezisov dokladov II Regionalnoy nauchno-tekhnicheskoy konferentsii molodykh uchenykh i spetsialistov alyuminievoy promyshlennosti (Collection of thesis of reports of the II Regional scientific-technical conference of young scientists and aluminium production specialists). Irkutsk, 2004. pp. 96–98. 9. Dipling W. G. Verfahren zur Gewinnung von Kryolith aus Aluminium- und Fluorverbindungen enthaltenden Stoffen. Patent DE, No. 925407. Filed : 1952-10-26. Published : 1955-03-21. 10. Belyaev A. I., Zhemchuzhina E. A. Mikroskopicheskiy analiz uglerodistykh materialov i elektrodov (Microscopic analysis of carbonaceous materials and electrodes). Moscow : Metallurgizdat, 1957. 185 p. 11. E. P. Rzhechitskiy, V. V. Kondratev. Sposob polucheniya ftoristogo alyuminiya (Aluminium fluoride obtaining method). Patent RF, No. 2462418. Published : September 27, 2012. Bulletin No. 27. 12. Isaeva L. A., Polyakov P. V. Glinozem v proizvodstve alyuminiya elektrolizom (Alumina in aluminium production by electrolysis). Krasnoturinsk : Publishing House JSC “BAZ”, 2000. 199 p. 13. Richards N. E. Alumina in Smelting. The 19-th International Course on Process Metallurgy of Aluminium. 2000. 14. Kondratev V. V., Rzhechitskiy E. P. Ekologicheskaya i ekonomicheskaya effektivnost pererabotki rastvorov gazoochistki i ftoruglerodsoderzhashchikh otkhodov proizvodstva alyuminiya (Ecological and economic efficiency of processing of gas purification solutions and fluorine-containing production wastes). Ekologiya i promyshlennost Rossii = Ecology and Industry of Russia. 2011. No. 8. pp. 28–31. 15. Vinogradov V. V., Petrovskii V. A., Shabalov I. P. Use of modeling to determine the effect of the contents of aluminum and nitrogen on the formation of nonmetallic inclusions in high-carbon steel. Metallurgist. 2014. Vol. 57, No. 9/10. pp. 981–986. 16. Qin Zhang, Yueqing Qiu, Jianxin Cao. Study on the Rare Earth Containing Phosphate Rock in Guizhou and the Way to Concentrate Phosphate and Rare Earth Metal Thereof. Journal of Powder Metallurgy & Mining. 2014. Vol. 3, No. 2. pp. 44–55. |