Journals →  Gornyi Zhurnal →  2016 →  #3 →  Back

PROCESSING AND COMPLEX USAGE OF MINERAL RAW MATERIALS
ArticleName Mineralogy of slag dumps at Norilsk Nickel plant
DOI 10.17580/gzh.2016.03.11
ArticleAuthor Makarov V. A., Mikheev V. G., Samorodskiy P. N.
ArticleAuthorData

Institute of Mining, Geology and Geotechnology, Siberian Federal University, Krasnoyarsk, Russia:

V. A. Makarov, Director, Doctor of Geological-Mineralogical Sciences
V. G. Mikheev, Candidate of Geological-Mineralogical Sciences
P. N. Samorodskiy, Associate Professors, Candidate of Geological-Mineralogical Sciences

Abstract

Slag dumps are peculiar man-made objects attractive from the viewpoint of sometimes high content of ferrous and noble metals. Examination of slag dumps at Norilsk Nickel plant discovered various copper–nickel and noble–rare metal mineral substances. The slag dumps are of nonuniform structure and mineralization; zonal distribution of slag is well-defined owing to different rates of cooling and freezing. Slag composition shows dominance of dense low-porous varieties composed of darkbrown glass as a rule. Porous fragments of slag are subordinate. The third textural variety in the slag composition is nodular and kidney-shaped particles. The diversity and size of ore minerals is directly related with distribution of pores in slag and with slag divitrification. Amount of ore minerals in slag is variant; mostly ore mineral content is 3–5% over area of polished section, seldom it is 8–10% and above. It is found that composition of slag contains round 30 minerals. The basic silicate slag-for ming phases are sulfur-rich matrix glass, fayalite, nickel-rich olivine, anorthite and enstatite. Predominant ore minerals are chalcopyrrhotine, pyrrhotine, magnetite, chalcopyrite, heazlewoodite, chalcocite, pentlandite, bornite, liver ore, ilmenite, native copper, awaruite, ferrite, trevorite, marcasite, valleriite; there are single shots of argentite, native silver and tin, platinum and palladium metals. Ore minerals form as a rule fine, small, uniform and nonuniform dissemination, seldom there are spots up to 3–4 cm in size. There are single instances of massive ore matte of grey or yellowish-grey color. Total content of platinum group elements and gold ranges from 1 to 2.2 g/t in different slag dumps, and is highly variable in separate slag dumps. Platinum group elements form intrinsic minerals of small size (first micrometers) enclosed mainly in metal and sulfide phases. Also high content of Pd and Pt is discovered in sulfides without mineral forms. Silicates and glass contain no platinoids. On the whole, mineral associations generated in melted slag under freezing at Norilsk Nickel plant is si milar to natural mineral associations, with some peculiarities (primarily, higher content of nickel in some phases). The obtained information is relevant in auditing of slag dumps with a view to subject them to re-processing and in analyzing natural mineralization processes. The significant (up to direct) correlation of slag contents of ferrous and noble metals allows using pretreatment and beneficiation circuits based on X-ray radiometric separation. The concentrate can be treated by flotation.

keywords Norilsk Nickel plant, slag, slag dump, matte, mineralogy, sulfides, intermetallic compounds, platinum group metals, zonal distribution
References

1. Blagodatin Yu. V., Zakharov B. A., Kaytmazov N. G. et al. Vnedrenie novykh vysokoeffektivnykh protsessov izvlecheniya blagorodnykh metallov iz rud i tekhnogennogo syrya v aktsionernom obshchestve «Norilskiy kombinat» (Introduction of new high-efficient processes of noble metal extraction from ores and anthropogenic raw materials at the JSC «Norilsk Combine»). Zoloto Sibiri: geologiya, geokhimiya, tekhnologiya i ekonomika : tezis doklada I Sibirskogo simpoziuma (Siberian gold: geology, geochemistry, technology and economics : thesis of a report of the I Siberian symposium). Krasnoyarsk : Krasnoyarsk State Academy of Non-Ferrous Metals and Gold, 1999. pp. 51–52.

2. Dodin D. A., Govorova L. K., Izotko V. M. et al. Novyy netraditsionnyy tip mestorozhdeniy platinosoderzhashchego syrya – tekhnogennyy (vnutrennee stroenie, platinonosnost, tekhnologii pererabotki) (Anthropogenic type as a new non-traditional type of deposits of platinum-containing raw materials (inner structure, platinum-bearing capacity, processing technologies)). Platina v geologicheskikh formatsiyakh Sibiri : tezis doklada obshcherossiyskogo Seminara (Platinum in Siberian geological formations : thesis of a report of All-Russian seminar). Krasnoyarsk, 2001. pp. 48–50.
3. Dodin D. A., Dodina T. S. Sulfidnye platinoidno-medno-nikelevye mestorozhdeniya Norilskogo rayona – glavnyy proekt platinodobyvayushchey otrasli Rossii vtoroy poloviny XX i pervoy chetverti XXI veka (Sulfide platinum-copper-nickel deposits of Norilsk region – the main project of Russian platinum-mining industry (the second part of the XX century and the first quarter of the XXI century)). Platina Rossii. Problemy razvitiya mineralno-syrevoy bazy platinovykh metallov v XXI veke : sbornik nauchnykh trudov. Tom III. Knigi 1, 2 (Russian platinum. Problems of development of mineral-resource base of platinum metals in the XXI century : collection of scientific proceedings. Vol. III. Books 1, 2). Moscow : JSC «Geoinformark», 1999.
4. Erokhin Yu. V. Mineralogiya shlakov Rezhevskogo nikelevogo zavoda. Mineralogiya tekhnogeneza (Mineralogy of Rezhevsk nickel smelter slags. Technogenesis mineralogy). Miass: Institute of Mineralogy of Ural Branch of Russian Academy of Sciences, 2012. pp. 50–64.
5. Kozlov P. S., Erokhin Yu. V. Novye dannye po fayalitovym shlakam Mariinskogo peredelnogo zavoda. Mineralogiya tekhnogeneza (New information about fayalite slags of Mariinsk semiintegrated steelworks. Technogenesis mineralogy). Miass: Institute of Mineralogy of Ural Branch of Russian Academy of Sciences, 2013. pp. 67–76.
6. Makarov D. V., Masloboev V. A., Nesterov D. P. et al. Issledovanie vozmozhnostey izvlecheniya tsvetnykh metallov iz tekhnogennykh medno-nikelevykh produktov. Mineralogiya tekhnogeneza (Investigation of the possibilities of non-ferrous metal extraction from anthropogenic copper-nickel products. Technogenesis mineralogy). Miass: Institute of Mineralogy of Ural Branch of Russian Academy of Sciences, 2011. pp. 161–173.
7. Naumov V. A., Lunev B. S., Naumova O. B. Tekhnogennye mestorozhdeniya — rezerv mineralnoy bazy Rossii (Anthropogenic deposits as a reserve of Russian mineral base). Vestnik Permskogo universiteta = Perm University Herald. 2011. Iss. 1. pp. 50–56.
8. Stekhin A. I., Kunilov V. E., Oleshkevich O. I. Tekhnogennye mestorozhdeniya blagorodnykh i tsvetnykh metallov v Norilskom rayone (Anthropogenic deposits of noble and non-ferrous metals in Norilsk region). Nedra Taymyra (Taymyr subsoils). Norilsk, 1995. pp. 85–93.
9. Toloknov D. A., Selivanov E. N., Gulyaeva R. I. et al. Formy nakhozhdeniya tsvetnykh metallov v troilitovom shteyne, nasyshchennom oksidami kaltsiya (Non-ferrous metal occurrence in troilite matte, saturated by calcium oxides). Rasplavy = Russian Metallurgy (Metally). 2012. No. 6. pp. 43–48.
10. Fomchenko N. V., Muravev M. I. Poluchenie medi i nikelya iz metallurgicheskikh otkhodov s primeneniem atsidofilnykh khemolitotrofnykh mikroorganizmov (Copper and nickel obtaining from metallurgical wastes with application of acidophile chemolithotroph microorganisms). Prikladnaya biokhimiya i mikrobiologiya = Applied Biochemistry and Microbiology. 2015. Vol. 51, No. 4. pp. 371–376.
11. Bipra Gorai R. K., Premchand J. Characteristics and utilization of copper slag – a review. Resources, Conservation and Recycling. 2003. Vol. 39. pp. 299–313.
12. Chowdhury S. R., Yanful E. K., Pratt A. R. Recycling of nickel smelter slag for arsenic remediation — an experimental study. Environmental Science and Pollution Research. 2014. Vol. 21. pp. 10096–10107.
13. Yildirim I. Z., Prezzi M. Chemical, mineralogical, and morphological properties of steel slag. Advances in Civil Engineering. 2011. Vol. 2011. pp. 1–13.
14. Manasse A., Mellini M. Chemical and textural characterization of medieval slags from the Massa Marittima smelting sites (Tuscane, Italy). Journal of Cultural Heritage. 2002. Vol. 3. pp. 187–198.
15. Piatak N. M., Seal II R. R. Mineralogy and the release of trace elements from slag the Hegeler Zinc smelter, Illinois (USA). Applied Geochemistry. 2010. Vol. 25. pp. 302–320.
16. Wang G., Ni W., Li K. et al. Crystallization characteristics of iron-rich glass ceramics prepared from nickel slag and blast furnace slag. International journal of minerals, metallurgy and materials. 2011. Vol. 18, No. 4. pp. 455–459.
17. Wang G., Thompson R. Slag use in highway construction — the philosophy and technology of its utilization. International journal of pavement research and technology. 2011. Vol. 4, No. 2. pp. 97–103.

Language of full-text russian
Full content Buy
Back