ArticleName |
Probabilistic model of material grinding as a self-organization operator and process attractor |
ArticleAuthorData |
Zh. Abishev Chemical-Metallurgical Institute, Karaganda, Republic of Kazakhstan:
V. P. Malyshev, Head of Entropic-Information Analysis Laboratory, e-mail: eia_hmi@mail.ru A. M. Makasheva, Chief Researcher of Entropic-Information Analysis Laboratory Yu. S. Zubrina, Master's Degree Student of Karaganda State Technical University, Laboratory Assistant of Entropic-Information Analysis Laboratory
JSC “National Scientific-Technological Holding “Parasat”, Astana, Republic of Kazakhstan:
N. S. Bekturganov, Chairman of Board |
Abstract |
In the recent years, grinding process has been theoretically represented by the development of cell models and the models, based on the use of the “maximum entropy method”. However, the recent material grinding investigations show the regularities, requiring the experimental identification of functional parameters, with any private parts of process implementation. The authors made a complete probabilistic model of the grinding process, which takes into account the consecutive probabilistic events of rapprochement, contact and interaction between the grinded and grinding bodies, as well as the consistent transformation of the major fractions into the small ones. Other researchers have also started to use this model. The randomized state of the system of grinded and grinding bodies during the ball mill operation in the tumbling regime allows to assimilate the grinding process to the kinetics of molecular collisions based on the generalized probabilistic expression of the process rate (V): V = Z Pconc Pst Pа, using the frequency (Z), concentration (Pconc), steric (Pst) and activation (Pа) factors. Each factor is determined by the probability of the corresponding elementary event. Accounting of the rates of decrease and accumulation of each fraction, according to the kinetics of consecutive irreversible reactions (in relation to the grinding process), leads to the integral model of the process. This shows the possibility of calculation of a share of each fraction in the process with the corresponding decrease of fraction mixture entropy, pointing on selforganization of crushing in randomized system. Application of probabilistic model to the description of industrial mill operation testifies to its sufficient adequacy in the conditions of accounting of the whole set of influencing factors. |
References |
1. Malyshev V. P., Turdukozhayeva (Makasheva) A. M. What Thunder There and is not Heard When Using Ball Mills? Journal of Materials Science and Engineering A. 2013. Vol. 3, No. 2. pp. 131–144. 2. Malyshev V. P., Makasheva A. M., Zubrina Y. S. United Probabilistic Nature аnd Model of Chemical and Mechanical Reactions of Consecutive Destruction of Substance. American Journal of Physical Chemstry. 2015. Vol. 4, No. 5. pp. 42–47. 3. Malyshev V. P., Makasheva A. M., Bekturganov N. S., Tokbulatov T. E., Kravchenko V. G., Kaykenov D. A. Ispolzovanie veroyatnostnoy modeli izmelcheniya dlya analiza i prognozirovaniya rezultatov raboty promyshlennoy melnitsy (Application of the probabilistic model of grinding for analysis and prediction of commercial mill operating results). Obogashchenie Rud = Mineral processing. 2014. No. 4. pp. 3–7. 4. Rodigin N. M., Rodigina E. N. Posledovatelnye khimicheskie reaktsii. Matematicheskiy analiz i raschet (Subsequent chemical reactions. Mathematical analysis and calculation). Moscow : USSR Academy of Sciences, 1960. 140 p. 5. Kolmogorov A. N. O logarifmicheski normalnom zakone raspredeleniya razmerov chastits pri droblenii (About the lognormal law of particle size distribution during the grinding process). Doklady Akademii Nauk SSSR = Reports of USSR Academy of Sciences. 1941. Vol. 31, No. 2. pp. 99–101. 6. Demenok S. L. Prosto khaos (Just chaos). Saint Petersburg : LLC “Strata”, 2013. 232 p. 7. Prigozhin I. Konets opredelennosti. Vremya, khaos i novye zakony prirody (The end of distinctness. Time, chaos and new nature laws). Moscow — Izhevsk : Scientific-Engineering Center “Regular and chaotic dynamics”, 2001. 208 p. 8. Vasiliev V. A., Romanovskii Ju. M. Autowave Processes in Kinetic Systems: Spatial and Temporal Self-Organization in Physics, Chemistry, Biology, and Medicine (Mathematics and its Applications). Netherland : Springer, 2013. 272 p. 9. Schieve W. C., Allen P. M. Self-Organization and Dissipative Structures: Applications in the Physical and Social Sciences. Editors: W. C. Shhieve, P. M. Allen. Austin (Texas) : Univ of Texas Pr, 2014. 374 p. 10. Rasband N. Chaotic Dynamics of Nonlinear Systems (Dover Books on Physics). USA :Dover Publications, 2015. 240 p. 11. Wunner G., Pelster A. Selforganization in Complex System: The Past, Present, and Future of Synergetics. Proceedings of the International Symposium. Delmenhorst (Germany) : Springer, 2015. 351 p. 12. Karimova L. M., Zhumashev K. Zh., Kayralapov E. T. Laboratornaya proverka novoy kineticheskoy modeli izmelcheniya (Laboratory check of a new kinetic model of grinding). Obogashchenie Rud = Mineral processing. 2013. No. 3. pp. 15–17. 13. Smirnov S. F. Razrabotka nauchnykh osnov protsessov formirovaniya fraktsionnykh massopotokov v tekhnologicheskikh sistemakh izmelcheniya : dissertatsiya … doktora tekhnicheskikh nauk : 05.17.08 (Development of the scientific basis of the processes of formation of fraction mass flows in technological grinding systems : Dissertation … of Doctor of Engineering Sciences : 05.17.08). Ivanovo, 2009. 266 p. 14. Filichev P. V. Prognozirovanie kharakteristik protsessov izmelcheniya na osnove primeneniya printsipa maksimuma entropii : dissertatsiya … kandidata tekhnicheskikh nauk : 05.17.08 (Forecasting of grinding process characteristics on the basis of application of the maximum entropy method : Dissertation … of Candidate of Engineering Sciences : 05.17.08). Ivanovo, 1999. 101 p. 15. Pryadko N. S., Strelnikov G. A., Ternovaya E. V., Grushko V. A., Pyasetskiy N. Yu. Otsenka skorosti tonkogo izmelcheniya rud melnitsami razlichnykh tipov (Assessment of the fine ore grinding rate by various type of mills). Tekhnicheskaya mekhanika = Technical mechanics. 2014. No. 3. pp. 114–121. 16. Alekseeva E. A., Andreev E. E., Brichkin V. N., Nikolaeva N. V., Tikhonov N. O. Intensifikatsiya protsessa izmelcheniya boksitov v sterzhnevoy melnitse (Bauxites rod mill grinding process intensification). Obogashchenie Rud = Mineral processing. 2014. No. 3. pp. 3–6. 17. Pilov P. I., Pryadko N. S. Snizhenie energopotrebleniya v zamknutykh tsiklakh tonkogo izmelcheniya rud (Decreasing of energy consumption in the closed cycles of fine ore grinding). Metallurgicheskaya i gornorudnaya promyshlennost = Metallurgical and Mining Industry. 2013. No. 6. pp. 75–80. 18. Malyarov P. V., Sysoev N. I., Sklyarov E. V. Issledovanie zakonomernostey segregatsii melyushchikh tel v sharovykh melnitsakh (Grinding bodies segregation regularities study in ball mills). Obogashchenie Rud = Mineral processing. 2012. No. 3. pp. 3–6. 19. Potapov F. P. Intensifikatsiya protsessa pomola v sharovykh barabannykh melnitsakh : dissertatsiya … kanidata tekhnicheskikh nauk : 05.02.13 (Intensification of grinding process in ball mills : Dissertation … of Candidate of Engineering Sciences : 05.02.13). Belgorod, 2011. 184 p. 20. Karimova L. M., Karimov R. M., Kayralapov E. T. Dopolnenie i opytnaya proverka veroyatnostnoy modeli izmelcheniya rud primenitelno k mokromu izmelcheniyu v sharovykh melnitsakh (Addition and experimental control of probabilistic ore grinding model applied to the wet grinding in ball mills). Kompleksnoe ispolzovanie mineralnogo syrya = Complex Use of Mineral Resources. 2013. No. 1. pp. 18–28. |