Journals →  Tsvetnye Metally →  2016 →  #1 →  Back

RADIOACTIVE ELEMENTS
ArticleName Prospects of titanium dioxide nanotube usage for the high-performance uranium ion sorption
DOI 10.17580/tsm.2016.01.09
ArticleAuthor Chubik M. P., Osipova N. A., Gonets A. V., Chubik M. V.
ArticleAuthorData

Tomsk Polytechnic University, Tomsk, Russia:

M. P. Chubik, Assistant Professor (Chair of Geoecology and Geochemistry)
N. A. Osipova, Assistant Professor (Chair of Geoecology and Geochemistry)
A. V. Gonets, Post-Graduate Student (Chair of Geoecology and Geochemistry), e-mail: moskalenkoav@tpu.ru
M. V. Chubik, Assistant Professor, Chair of Biotechnology and Organic Chemistry

Abstract

There are shown the results of the nano-sized material sorption characteristics research. Nanotubes with layer structure were used for radioactive uranyl-ions UO22+ sorption from water medium. Nanotubes TiO2 were obtained by low-temperature fritting of electroblasting nanopowders. Uranyl-ions were sorbed from uranyl nitrate model solutions of required concentrations and a model solution prepared by reaction of natural mineral autenit with twice-distilled water and HNO3 addition. Research of the UO22+ sorption were carried out under static and dynamic conditions at the room temperature. The impact of рН on the UO22+ sorption extent has been studied. Titanium dioxide nanotubes sorption characteristics dependence on mass of sorbent test charge and phases contact time. Analysis of mechanism of UO22+ absorption and fixation by nanotubes TiO2 has been accomplished. As a result of immobilization, UO22+ are sorbed in nanotube which doesn’t require reduction after the sorption. Layer structure of nanotubes becomes significally deformed during sorption. They became fragmented (initial length of nanotubes is 300–600 nm, but after the sorption it comes to 100–130 nm) and unrolled, which increase possibility of radioactive ions capture in the plates of nanotubes. It is shown that titanium dioxide nanotubes with sorption capacity from 36.8 to 92.3% can be used as a very promising material for radioactive water decontamination.

keywords Nano-sized materials, nanosorbent, titanium dioxide nanotubes, sorption, purification, radioactive water contamination, radioactive ions
References

1. Available at : http://kremlin.ru/news/15177 (accessed: September 14, 2015). (in Russian)
2. Abdel Rahman R. O., Ibrahium H. A., Hung Y. Liquid Radioactive Wastes Treatment: A Review. Water. 2011. Vol. 3, No. 2. pp. 551–565.
3. Dong Jiang Yang, Zhan Feng Zheng, Huai Yong Zhu. Titanate Nanofibers as Intelligent Absorbents for the Removal of Radioactive Ions from Water. Advanced Materials. 2008. Vol. 20, No. 14. pp. 2777–2781.
4. Nikolaev A. I., Gerasimova L. G., Maslova M. V. Novye sorbenty na osnove tekhnogennykh produktov Otkrytogo Aktsionernogo Obshchestva “Apatit” dlya obezvrezhivaniya radioaktivnykh i toksichnykh otkhodov (New sorbents on the basis of anthropogenic products of the JSC “Apatit” for deactivation of radioactive and toxic wastes). Vestnik Kolskogo nauchnogo tsentra Rossiyskoy Akademii Nauk = Bulletin of Kola Science Center of Russian Academy of Sciences. 2014. No. 2. pp. 89–97.
5. Nikiforov I. A. Adsorbtsionnye metody v ekologii : uchebnoe posobie (Adsorption methods in ecology : tutorial). Saratov : Saratov Chernyshevsky State University, 2011. 45 p.
6. Myasoedova G. V., Nikashina V. A. Sorbtsionnye materialy dlya izvlecheniya radionuklidov iz vodnykh sred (Sorption materials for extraction of radionuclides from water mediums). Rossiyskiy khimicheskiy zhurnal = Russian Journal of General Chemistry. 2006. No. 5. pp. 55–64.
7. Osipova E. A. Vodorastvorimye kompleksoobrazuyushchie polimery (Watersoluble complex-forming polymers). Sorosovskiy obrazovatelnyy zhurnal = Soros education journal. 1999. No. 8. pp. 40–47.
8. Pavlenko V. I., Yastrebinskaya A. V., Matyukhin P. V., Klochkov E. P. Modifitsirovanie prirodnykh mineralnykh sistem dlya ochistki vody ot radionuklidov (Modification of natural mineral systems for purification of waters from radionuclides). Sovremennye problemy nauki i obrazovaniya = Modern problems of science and education. 2012. No. 6. Available at : http://www.science-education.ru/pdf/2012/6/644.pdf (accessed: September 14, 2015).
9. Krivovichev S. V., Kahlenberg V., Kaindl R., Mersdorf E., Tananaev I. G., Myasoedov B. F. Nanoscale tubules in uranyl selenates. Angewandte Chemie International Edition. 2005. Vol. 44, No. 7. pp. 1134–1136.
10. Sun Y., Yang S., Sheng G., Guo Z., Wang X. The removal of U(VI) from aqueous solution by oxidized multi-walled carbon nanotubes. Journal of Environmental Radioactivity. 2012. Vol. 105. pp. 40–47.
11. Yamaguchi D., Furukawa K., Takasuga M., Watanabe K. A Magnetic Carbon Sorbent for Radioactive Material from the Fukushima Nuclear Accident. Scientific Reports. 2014. Vol. 4. DOI: 10.1038/srep06053
12. Salnikova E. V., Mursalimova M. L., Stryapkov A. V. Metody kontsentrirovaniya i razdeleniya mikroelementov : uchebnoe posobie (Methods of concentration and separation of microelements : tutorial). Orenburg : Orenburg State University, 2005. 157 p.
13. PNDF 14.1:2:4.38-95. Metodika vypolneniya izmereniy massovoy kontsentratsii urana v probakh prirodnoy, pitevoy i stochnoy vody lyuminestsentnym metodom na analizatore zhidkosti “Flyuorat-02-2M” (Nature protection normative federal documents 14.1:2:4.38–95. Method of measurements of mass concentration of uranium in the samples of natural, potable and waste water by luminescence method on the liquid analyzer “Flyuorat-02-2M”). Moscow, 2005. 18 p. (in Russian).
14. Bogolepov A. A., Pshinko G. N., Kornilovich B. Yu. Vliyanie kompleksoobrazovateley na protsessy sorbtsionnoy ochistki vod, soderzhashchey uran (Influence of complexing agents on the processes of sorption purification of uranium-containing waters). Khimiya i tekhnologiya vody = Journal of Water Chemistry and Technology. 2007. Vol. 29, No. 1. pp. 18–26.
15. Ostrovskiy Yu. V., Zabortsev G. M., Yakobchuk S. P., Aleksandrov A. B., Khlytin A. L. Selektivnoe izvlechenie urana iz slozhnykh solevykh sistem na neorganicheskikh sorbentakh (Selective extraction of uranium from complex salt systems on inorganic sorbents). Radiokhimiya = Radiochemistry. 2010. Vol. 5, No. 1. pp. 60–62.
16. Xu M., Weil G., Li S., Niu X., Chen H., Zhang H., Chubik M., Gromov A., Han W. Titanate nanotubes as a promising absorbent for high effective radioactive uranium ions uptake. Journal of Nanoscience and Nanotechnology. 2012. Vol. 12, No. 8. pp. 6374–6379.
17. Davydov A. A. IK-spektroskopiya v khimii poverkhnosti okislov (IR-spectroscopy in oxile surface chemistry). Novosibirsk : Nauka, 1984. 244 p.
18. Dadachov M. Novel titanium dioxide, process of making and method of using same. Patent US, No. 20060171877, MPC B 01 J 23/00. Published: August 03, 2006.

Language of full-text russian
Full content Buy
Back