Название |
Analytical geoinformation system for integrated geological-geophysical research in the territory of Russia |
Реферат |
To obtain new fundamental data and scientific generalizations, it is particularly important today to adhere to integrated system analysis of geological and geophysical information obtained using various methods and systems for data recognition in the available databases. The fundamental research aimed at prediction and appraisal of strategic raw materials requires contemporary information support to perform integrated analysis of different arrays of geological/geophysical data. Modern geographical information systems GIS offer an effective and reliable tool for complex multifactor analysis of spatial data. Moreover, they enable automation of processes connected with collection, processing and imaging of spatial data, which improves quality of the data interpretation by a specialist–expert. The basic goal of the research is the elaboration of modern facilities for scientific analysis of geological/geophysical data based on GIS technologies. This article reports development of a geo-spatial database on geology and geophysics accessed through a topical portal (http://gis.gcras.ru/). This geoportal is a basis of multi-disciplinary GIS “Geoscientific Data on the Territory of Russia.” This article describes in detail topical digital layers and charts included in the geo-spatial database of this GIS. The features and capabilities of the geoportal are described in the article. To develop such a GIS, the client/server approach was chosen, based on user’s operation with geospatial data and geo-processing tools using thin client aids. A user needs no special programs to be downloaded, except for web-browser. Interaction with geospatial data and geoprocessing services involves standard protocols of cartographic information sharing, including KML, HTML, XML, OGC-protocols (WMS, WFS) and others. Furthermore, the article presents a new algorithm of image identification to be introduced as an intellectual component of GIS for analysis of geological/geophysical data.
The authors appreciate participation of V. I. Kaftan, Prof, Dr Eng, Principal Researcher of the Geophysical Center of the Russian Academy of Sciences, in this study. |
Библиографический список |
1. Beriozko A., Lebedev A., Soloviev A., Krasnoperov R., Rybkina A. Geoinformation system with algorithmic shell as a new tool for Earth sciences. Russian Journal of Earth Sciences. 2011. Vol. 12, No. 1. ES1001. 2. Andrianova O. N., Gureva I. G., Kuznetsova G. N., Lipatov A. V., Sirota Yu. N., Chistyakova T. N. Gosudarstvennaya geologicheskaya karta masshtaba 1:2 500 000 (State geological map with the scale of 1:2 500 000). Saint Petersburg : A. P. Karpinsky Russian Geological Research Institute, 2011. 3. Petrov O. V., Feoktistov V. P. et al. Prognozno-mineragenicheskaya karta na tverdye poleznye iskopaemye territorii Rossii, uvyazannaya s materialami po stranam SNG masshtaba 1:2 500 000 (Forecast-mineragenic map of Russian solid minerals, connected with the materials of CIS countries of the scale 1:2 500 000). Saint Petersburg : A. P. Karpinsky Russian Geological Research Institute, 2008. 4. Rodnov Yu. N., Belkina I. L. et al. Mineragenicheskaya karta Rossiyskoy Federatsii i sopredelnykh gosudarstv (v predelakh byvshego SSSR) masshtaba 1:2 500 000 (Mineragenic map of Russian Federation and adjoining states (within the former USSR) of the scale 1:2 500 000). Moscow : «Aerogeologiya», 2009. 5. Nelyubin V. V., Shcherbakova S. V., Kopylova N. N. Prognozno-mineragenicheskaya karta perspektiv neftegazonosnosti masshtaba 1:2 500 000 (Forecast-mineragenic map of the prospects of oil and gas bearing capacity of the scale 1:2 500 000). Saint Petersburg : A. P. Karpinsky Russian Geological Research Institute, 2010. 6. Pavlis N.K., Holmes S.A., Kenyon S.C., Factor J.K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research. 2012. Vol. 117. B04406. DOI: 10.1029/2011JB008916 7. Shako R. et al. EIGEN-6C: A High-Resolution Global Gravity Combination Model Including GOCE Data. In: Flechtner F. et al. (eds.), Observation of the System Earth from Space – CHAMP, GRACE, GOCE and future missions, Advanced Technologies in Earth Sciences. Berlin: Springer-Verlag Berlin Heidelberg, 2013. pp. 155–161. DOI: 10.1007/978-3-642-32135-1_20. 8. Stolk W., Kaban M. K., Beekman F., Tesauro M., Mooney W. D., Cloetingh S. High resolution regional crustal models from irregularly distributed data: Application to Asia and adjacent areas. Tectonophysics. 2013. Vol. 602. pp. 55–68. DOI: 10.1016/j.tecto.2013.01.022. 9. Kaban M. A Gravity Model of the North Eurasia Crust and Upper Mantle: 1. Mantle and Isostatic Residual Gravity Anomalies. Russian Journal of Earth Sciences. 2001. Vol. 3, No. 2. pp. 25–144. DOI: 10.2205/2001ES000062. 10. Kaban M. K. A gravity model of the north Eurasia crust and upper mantle: 2. The Alpine-Mediterranean fold belt and adjacent structures of the southern former USSR. Russian Journal of Earth Sciences. 2002. Vol. 4, No. 1. pp. 19–33. DOI: 10.2205/2002ES000082. 11. Tesauro M., Audet P., Kaban M. K., Bürgmann R. Cloetingh S. The effective elastic thickness of the continental lithosphere: Comparison between rheological and inverse approaches. Geochemistry, Geophysics, Geosystems. 2012. Vol. 13, No. 9. Q09001. DOI: 10.1029/2012GC004162. 12. Schaeffer A.J., Lebedev S. Global shear-speed structure of the upper mantle and transition zone. Geophysical Journal International. 2013. Vol. 194, No. 1. pp. 417–449. 13. Agayan S. M., Bogoutdinov Sh. R., Dobrovolsky M. N. Discrete Perfect Sets and their application in cluster analysis. Cybernetics and Systems Analysis. 2014. Vol. 50, No. 2. pp. 176–190. DOI: 10.1007/s10559-014-9605-9. 14. Gvishiani A. D., Agayan S. M., Bogoutdinov Sh. R., Solovev A. A. Diskretnyy matematicheskiy analiz i geologo-geofizicheskie prilozheniya (Discrete mathematical analysis and geological-geophysics applications). Vestnik Kamchatskoy Regionalnoy Assotsiatsii «Uchebno-Nauchnyy Tsentr». Nauki o Zemle = Bulletin of Kamchatka Regional Association «Scientific-Research Center». Earth Sciences. 2010. No. 2, Iss. 16. pp. 109–125. 15. Agayan S. M., Solovev A. A. Vydelenie plotnykh oblastey v metricheskikh prostranstvakh na osnove kristallizatsii (Isolation of dense areas in metric domains on the basis of crystallization). System Research and Information Technologies. 2004. No. 2. pp. 7–23. 16. Gvishiani A. D., Agayan S. M., Bogoutdinov Sh. R. Matematicheskie metody geoinformatiki. I. O novom podkhode k klasterizatsii (Mathematical methods of geoinformatics. I. About a new approach to clusterization). Kibernetika i sistemnyy analiz = Cybernetics and systems analysis. 2002. No. 2. pp. 104–122. 17. Gvishiani A. D., Diaman M., Mikhaylov V. O., Galdeano A., Agayan S. M., Bogoutdinov Sh. R., Graeva E. M. Algoritmy iskusstvennogo intellekta dlya klasterizatsii magnitnykh anomaliy (Machine intelligence algorythms for the clusterisation of magnetic anomalies). Fizika Zemli = Izvestiya, Physics of the Solid Earth. 2002. No. 7. pp. 13–28. 18. Mikhailov V., Galdeano A., Diament M., Gvishiani A., Agayan S., Bogoutdinov S., Graeva E., Sailhac P. Application of artificial intelligence for Euler solutions clustering. Geophysics. 2003. Vol. 68, No. 1. pp. 168–180. 19. Bogoutdinov Sh. R., Shuster V. L., Agayan S. M., Tsagan-Mandzhiev T. N., Kaftan V. I. Otsenka perspektiv neftegazonosnosti fundamenta v tsentralnoy chasti Zapadnoy Sibiri s primeneniem algoritmov nechetkoy logiki i sistemnogo analiza (Assessment of the prospects of oil and gas bearing capacity of the foundation in the central part of western Siberia with application of fuzzy logic algorithms and system analysis). Nauki o Zemle = Earth Sciences. 2015. No. 2. pp. 5–16. |