Название |
Improvement of accuracy of local geodynamic monitoring
using global navigation satellite systems |
Реферат |
The article presents state-of-the-arts, analysis, approaches, research&development, methods and technologies in the field of highly accurate geodynamic monitoring, in particular—local, movement an deformation of ground surface, buildings, structures, mines using tools of global navigation satellite systems (GNSS). Under consideration are features of determination of global, regional and local movement and deformation of ground surface using GNSS. Advantages and shortcomings of GNSS are compared with the other measurement aids. The analysis involves basic methods of GNSS estimates. Their capabilities are discussed in terms of handling issues of geodynamic monitoring. The conclusion is made that local geodesic survey enables the highest accurate positioning. The authors indicate particulars of configuration of local GNSS monitoring network, main sources of errors of GNSS-assisted positioning (external conditions and instrumental errors), their influence on the positioning accuracy and recommended methods and technologies of error minimization. The article offers modern alternative configurations of networks and methods of the network deployment to ensure the higher accurate determination of displacement and deformation vectors. Errors of external conditions are described. It is stressed that mitigation of errors requires taking repeated measurements at the same time of a day. It is recommended to adhere to the following package of methods and tools of higher accurate determination of movement and deformation at significant natural and industrial objects: highest accurate mode of static GNSS measurements in the scope of local geodynamic monitoring; adherence to limited spacing of measurement points at 5 km maximum in design and deployment of the monitoring networks; avoidance of small (30° and under) angles in triangles formed by vectors of baselines; adjustment of differences in repeated measurements; use of the same GNSS equipment at points of the control network. |
Библиографический список |
1. Tatarinov V. N., Morozov V. N., Kaftan V. I., Kagan A. Ya. Geodinamicheskiy monitoring kak osnova sokhraneniya biosfery pri zakhoronenii radioaktivnykh otkhodov (Geodynamic monitoring as a basis of biosphere saving during the radioactive waste disposal). Nauki o Zemle = Earth Sciences. 2014. No. 3. pp. 5–11. 2. Kaftan V. I., Ustinov A. V. Primenenie globalnykh navigatsionnykh sputnikovykh sistem dlya monitoringa deformatsiy gidrotekhnicheskikh sooruzheniy (Application of global satellite navigation systems for waterwork deformation monitoring). Gidrotekhnicheskoe stroitelstvo = Power Technology and Engineering. 2012. No. 12. pp. 11–19. 3. Panzhin A. A., Panzhina N. A. Ob osobennostyakh provedeniya geodinamicheskogo monitoringa pri razrabotke mestorozhdeniy poleznykh iskopaemykh Urala s ispolzovaniem kompleksov sputnikovoy geodezii (About the peculiarities of behavior of geodynamic monitoring during Ural mineral deposits mining using satellite geodesy complexes). Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh = Journal of Mining Science. 2012. No. 6. pp. 46–55. 4. Chen G., Cheng X., Chen W., Li X., Chen L. GPS-based slope monitoring systems and their applications in transition mining from open-pit to underground. International Journal of Mining and Mineral Engineering. 2014. Vol. 5, No. 2. pp. 152–163. 5. Gao J., Liu Ch., Wang J., Li Z., Meng X. A new method for mining deformation monitoring with GPS-RTK. Transactions on Nonferrous Metals Society of China. 2011. Vol. 21. pp. 659–664. 6. Bock Y., Macdonald T., Merts J., Bock L., Fayman J. Epoch-by-Epoch® Real-Time GPS Positioning in High Dynamics and at Extended Ranges. The ITEA Journal of Test and Evaluation. 2004. Vol. 25, No. 3. pp. 37–45. 7. Bock Y., Nikolaidis R. M., de Jonge P. J., Bevis M. Instantaneous geodetic positioning at medium distances with the Global Positioning System. Journal of Geophysical Research. 2000. Vol. 105. pp. 28233–28253. 8. Langbein J., Bock Y. High-rate real-time GPS network at Parkfield: Utility for detecting fault slip and seismic displacements. Geophysical Research Letters. 2004. Vol. 31. L15S20. 9. Kaftan V. I. Analiz ustoychivosti geodezicheskikh punktov i opredelenie vektorov smeshcheniy zemnoy kory (Analysis of geodetic point stability and definition of the Earth's crust dosplacement vectors). Geodeziya i kartografiya = Geodesy and cartography. 1986. No. 5. pp. 9–13. 10. Osnovnye polozheniya o gosudarstvennoy geodezicheskoy seti Rossiyskoy Federatsii. GKINP (GNTA)-01-006-03 (Basic regulations of the State geodetic network of Russian Federation. GKINP (GNTA)-01-006-03). Moscow : Moscow State University of Geodesy and Cartography, 2004. 28 p. (in Russian) 11. Dokukin P. A., Kaftan V. I., Krasnoperov R. I. Vliyanie formy treugolnikov v geodezicheskoy seti na rezultaty opredeleniya deformatsiy zemnoy poverkhnosti (Influence of triangle shape in geodetic network on the results of definition of Earth surface deformations). Izvestiya vuzov. Geodeziya i aerofotosemka = Proceedings of universities. Geodesy and aerophotography. 2010. No. 5. pp. 6–11. 12. Delone B. N. O pustote sfery (About the sphere void). Izvestiya Akademii Nauk SSSR. Otdeleniye matematicheskikh i estestvennykh nauk = Bulletin of USSR Academy of Sciences. Department of mathematical and natural sciences. 1934. No. 4. pp. 793–800. 13. Kaftan V. I., Tatevian R. A. Local control network of the fiducial GLONASS/GPS station. IAG. Section I — Positioning, Comission X — Global and Regional Networks, Subcommission for Europe (EUREF). Munchen, 2000. Publication No. 9. pp. 333–337. 14. Antonovich K. M. Troposfernaya zaderzhka pri GNSS izmereniyakh (Tropospheric delay during the GNSS measurements). Izvestiya vuzov. Geodeziya i aerofotosemka = Proceedings of universities. Geodesy and aerophotography. 2012. No. 2/1. pp. 6–11. 15. Aerts W., Bruyninx C., Defraigne P., Vandenbosch G. A. E. On the influence of RF absorbing material on the GNSS position. GPS Solutions. 12/2014. 16. Baire Q., Bruyninx C., Legrand J., Pottiaux E., Aerts W., Defraigne P., Bergeot N., Chevalier J. M. Influence of different GPS receiver antenna calibration models on geodetic positioning. GPS Solutions 10/2013. 18(4). pp. 529–539. 17. Loskutov A. A., Shoulmin M. V., Kaftan V. I. Physical correlation of repeated geodetic measurements. Journal of Geodynamics. 1988. No. 10. pp. 139–146. 18. Gerasimenko M. D., Kamornyy V. M., Kaftan V. I. Obrabotka planovykh i prostranstvennykh geodezicheskikh setey na geodinamicheskikh poligonakh (Processing of horizontal and space geodetic networks at geodynamic polygons). Geodeziya i kartografiya = Geodesy and cartography. 1993. No. 2. pp. 16–21. 19. Kaftan V. I. Voprosy opredeleniya vertikalnykh smeshcheniy zemnoy kory (Problems of definition of vertical displacements of the Earth's crust). Geodeziya i kartografiya = Geodesy and cartography. 1986. No. 10. pp. 47–51. 20. Kaftan V. I., Krasnoperov R. I., Yurovskiy P. P. Graficheskoe predstavlenie rezultatov opredeleniya dvizheniy i deformatsiy zemnoy poverkhnosti sredstvami globalnykh navigatsionnykh sputnikovykh sistem (Graphic expression of results of definition of movements and deformations of Earth surface by global satellite navigation systems). Geodeziya i kartografiya = Geodesy and cartography. 2010. No. 11. pp. 2–7. 21. Kaftan V. I. Dokukin P. A. Opredelenie smeshcheniy i deformatsiy po dannym sputnikovykh geodezicheskikh izmereniy (Definition of displacements and deformations according to the satellite geodetic measurement data). Geodeziya i kartografiya = Geodesy and cartography. 2007. No. 9. pp. 18–22. |