Journals →  Chernye Metally →  2015 →  #3 →  Back

Iron and steelmaking
ArticleName Operational blast stove limits with respect to environmental requirements
ArticleAuthor J. Rieger, Ch. Weiβ, B. Rummer.
ArticleAuthorData

Montanuniversität Leoben (Leoben, Austria):

J. Rieger, Mag. Eng., Dr. Min., Chair of Processing Equipment for Environment Protection, Е-mail: johannes.rieger@unileoben.ac.at
Ch. Weiβ, Dr. Eng., Prof., Chair of Processing Equipment for Environment Protection


Voestalpine Stahl GmbH Linz (Linz, Austria):
B. Rummer, Mag. Eng., Blast Furnace Equipment Dept.

Abstract

Several research activities focus on the optimization of reducing agent requirement of the blast furnace process. Higher injection rates of auxiliary reducing agents result in a decreased RAFT. One counter measure is the raise of the hot blast temperature. Nevertheless the hot blast temperature and the temperature level in the stove are restricted by the known stress corrosion cracking mechanism. Nowadays beside this phenomenon an environmental aspect in form of NOX emission limits further controls the maximum allowable temperature level. Computational Fluid Dynamics (CFD) states a valuable tool to investigate the operational limits of a blast stove. This investigation is devoted to simulation of the process of CO and NO forming during heating in a stove, with varying different technological parameters (roof temperature, excessive air, gas chemical composition). It was shown that excessive temperature of hot blowing can be resulted in decrease of coke consumption in a blast furnace and, respectively, in lowering of carbon dioxide emissions. Consequent improvement of CFD research is based on non-stationary simulation of the complete stove operation cycle, i.e. in the case of changing direction of gas stream

keywords Blast stove, environment requirements, carbon dioxide, nitrogen oxide, gas emissions, excessive air, computational fluid dynamics
References

1. Peters, M.; Schmöle, P.: stahl u. eisen 122 (2002) Nr. 4, S. 43/50.
2. Sucker, D.; Harp, G.; Dorweiler, W.: stahl u. eisen 101 (1981) Nr. 15, S. 25/31.
3. Kalfa, H.; Bühler, H. E.: Chem.-Ing.-Tech. 56 (1984) Nr. 1, S. 23/31.
4. Harp, G.; Klima, R. D.; Sucker, D.: stahl u. eisen 110 (1990) Nr. 6, S. 121/27.
5. Huijbregts, V. M. M.; Leferink, R. G. I.: Anti-Corrosion Methods and Materials 51 (2004) Nr. 3, S. 173/88.
6. Gantenberg, M.; Eschmann, F.; Schaub, E.: Hot stoves – more than 50 years of experience design optimization and future concepts, 6th European Coke and Ironmaking Congress (ECIC 2011), METEC Insteelcon, 27. Juni – 1. Juli 2011, Düsseldorf.
7. Bleck, W.; Brand, U. J.; Bühler, H. E.; Krone, T.: stahl u. eisen 120 (2000) Nr. 7, S. 37/45.
8. Dahlmann, P.; Lüngen, H. B.: stahl u. eisen 134 (2014) Nr. 1, S. 37/47.
9. Babich, A.; Senk, D.; Gudenau, H. W.; Mavrommatis, K. T.: Ironmaking, RWTH Aachen, 2008.
10. Biswas, A. K.: Principles of Blast Furnace Ironmaking, Cootha Verlag, 1981.
11. Knop, K.: stahl u. eisen 122 (2002) Nr. 11, S. 43/51.
12. Best Available Technology (BAT) Reference Document for Iron and Steel Production (2013), European IPPC Bureau, Sevilla, Spanien.
13. Meili, S.: Improvements to blast furnace gas burners using CFD, 3rd Steelsim Conf., 8. – 10. Sept. 2009, Leoben, Österreich.
14. Yang, B.; Pope, S. B.: Comb. and Flame 112 (1998) Nr. 1, S. 16/32.
15. Bescheid Land Oberösterreich zur UVP für das Vorhaben „L6“ der voestalpine, 2006.
16. Warnatz, J.; Maas, U.; Dibble, R. W.: Verbrennung — Physikalische Grundlagen, Modellierung und Simulation, Experimente, Schadstoffforschung, 3. Aufl., 2001, Springer Verlag, Berlin.
17. Rieger, J.; Drózd-Ryś, M.; Weiss, C.; Harmuth, H.: Steel Res. Int. 85 (2014) Nr. 4, S. 527/36.

Language of full-text russian
Full content Buy
Back