Journals →  Non-ferrous Мetals →  2015 →  #1 →  Back

MATERIAL SCIENCE
ArticleName Brazing of modern engineering materials with STEMET amorphous brazing filler metals
DOI 10.17580/nfm.2015.01.12
ArticleAuthor Sevryukov O. N., Suchkov A. N., Guseva E. V.
ArticleAuthorData

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia:

O. N. Sevryukov, Assistant Professor
A. N. Suchkov, Assistant Professor, e-mail: ansuchkov221283@mail.ru
E. V. Guseva, Post-Graduate Student

Abstract

Intermediate and final assembly is one of the most complex manufacturing operations in producing of structural elements. In most cases, this operation is carried out by different welding types. However, increase in the devices, efficiency is the result of their operation in extreme conditions: high temperature, stress, cyclic loading, effects of aggressive environments and, in some cases — radiation exposure. According to this, development and application of advanced materials are required: different types of graphite, ceramics, refractory metals, heat-resistant steels, nickel and titanium alloys. With a set of advantages over welding, brazing was established as a promising method of such materials, joining. At the same time, development of ultra-rapid melt solidification technology offered the great opportunities for application of rapidly quenched amorphous and nanocrystalline filler metals. This paper presents the results of development and production of rapidly quenched ribbon-type filler metals in amorphous and nanocrystalline
state on the basis of Al, Cu, Ni, Fe, Ti, Zr, produced under the grade STEMET® and designed for brazing of a wide range of alloys, refractory metals, non-metallized ceramics etc. The paper describes the experience in application of these filler metals for materials, brazing in fields of atomic (brazing of spacer grids, anti-debris filters, various adapters and other core elements), thermonuclear (brazing of elements of the ITER first wall and divertor), rocket and space (frame brazing for electronic devices of space satellites, rocket engine nozzles, elements of combustion chambers of plasma engines), automotive (brazing of automotive catalysts, ignition locks, heat exchangers and other equipment), aircraft (brazing of blades and other components of gas turbine engines, heat exchangers) engineering.

This work was carried out within the Centre “Nuclear Systems and Materials” with the state support of the Program of Improvement of the Competitiveness of National Research Nuclear University MEPhI (agreement with the Ministry of Education and Science of the Russian Federation (August 27, 2013; No. 02.а03.21.0005)).

keywords Melt, titanium, nickel, steel, copper, ceramics, zirconium, aluminum, amorphous alloy, brazing, filler metal, alloy, solidification, rapid quenching
References

1. Available at: http://www.stemet.ru (in Russian).
2. Rabinkin A. New Applications for Rapidly Solidified Brazing Foils. Welding Journal. 1989. Vol. 10. pp. 39–46.
3. Onzawa T., Suzumura A., Ko M. W. Brazing of titanium using low-melting-point Ti-based filler metals. Welding Journal. 1990. Vol. 12. pp. 462–467.
4. Rabinkin A., Liebermann H., Pounds S., Taylor J., Reidinger F., Siu-Ching L. Amorphous Ti-Zr-Base Metglas Brazing Filler Metal. Scripta Metallugica et Materialia. 1999. Vol. 25. pp. 399–404.
5. Kalin B. A., Sevryukov O. N., Fedotov V. T., Plyushchev A. N., Yaykin A. P. Novye amorfnye pripoi dlya payki titana i ego splavov (New amorphous solders for brazing of titanium and its alloys). Svarochnoe proizvodstvo = Welding engineering. 2001. No. 3. pp. 37–39.
6. Kalin B. A., Plyushchev A. N., Fedotov V. T., Sevryukov O. N., Goltsev V. Yu. Vliyanie strukturnogo sostoyaniya pripoya na fizikomekhanicheskie svoystva payanykh soedineniy (Influence of structural state of solder on physical-mechanical properties of brazed joints). Svarochnoe proizvodstvo = Welding engineering. 2001. No. 8. pp. 38–41.
7. Kalin B. A., Fedotov V. T., Grigorev A. E., Plyushchev A. N., Sevryukov O. N., Skuratov L. A. Sposob izgotovleniya kompozitsionnykh materialov (Method of manufacturing of composite materials). Patent RF, No. 2124418. Applied: July 08, 1996. Published: January 10, 1999.
8. Litunovsky N., Alekseenko E., Kuznetsov V., Lyanzberg D., Makhankov A., Rulev R. Repair of manufacturing defects in the armor of plasma facing units of the ITER Divertor Dome. Fusion Engineering and Design. 2013. Vol. 88, Iss. 9/10. pp. 1739–1743.
9. Litunovsky N., Alekseenko E., Makhankov A., Mazul I. Development of the armoring technique for ITER Divertor Dome. Fusion Engineering and Design. 2011. Vol. 86, Iss. 9/11. pp. 1749–1752.
10. Yakushin V., Polsky V., Kalin B., Dzhumaev P., Polyansky A., Sevryukov O., Suchkov A., Fedotov V. Erosion of tungsten and its brazed joints with bronze irradiated by pulsed deuterium plasma flows. Journal of Nuclear Materials. 2013. Vol. 442, Iss. 1/3. pp. S237–S241.
11. Kalin B. A., Suchkov A. N., Fedotov V. T., Sevryukov O. N., Ivannikov A. A., Polyansky A. A., Mazul I. V., Makhankov A. N., Gervash A. A. Application of rapidly quenched ribbon-type filler metals for brazing of the high heat flux elements of ITER. Fusion Science and Technology. 2012. Vol. 61. pp. 147–153.
12. Maksimova S. V. Amorfnye pripoi dlya payki nerzhaveyushchey stali i titana i struktura payanykh soedineniy (Amorphous solders for brazing of stainless steel and titanium, and structure of brazed joints). Adgeziya rasplavov i payka materialov = Adhesion of melts and materials brazing. 2007. Iss. 40. pp. 70–81.
13. Ivannikov A. A., Fedotov V. T., Sevryukov O. N., Kalin B. A., Suchkov A. N., Logvinchev I. S., Fedotov I. V. Payka reaktornykh ferritno-martensitnykh staley amorfnym bystrozakalennym lentochnym pripoem na osnove nikelya (Brazing of reactor ferrite-martensite steels by amorphous nickel-based rapid-quenched band solder). Svarochnoe proizvodstvo = Welding engineering. 2012. No. 7. pp. 40–45
14. Rabinkin A., Wenski E., Ribaudo A. Brazing stainless steel using a new MBF-series of Ni – Cr – B – Si amorphous brazing foils. Welding Journal. 1998. Vol. 2. pp. 66—75.
15. Available at: www.metglas.com
16. Kalin B. A., Mamedova T. T., Fedotov V. T., Sevryukov O. N., Isaenkova M. G., Perlovich Yu. A., Timoshin S. N., Sinelnikov L. P., Kuznetsov V. R. Payka splavov tsirkoniya amorfnym bystrozakalennykh lentochnym pripoem (Brazing of zirconium alloys by amorphous rapidly-quenched belt solder). Svarochnoe proizvodstvo = Welding engineering. 2007. No. 10. pp. 10–14.
17. Fedotov I. V., Suchkov A. N., Fedotov V. T., Sevryu kov O. N., Kalin B. A., Ivannikov A. A. Payka geksagonalnoy bornitridnoy keramiki s titanovym splavom VT1-0 bystrozakalennym pripoem na osnove titana (Brazing of hexagonal boron-nitride ceramics with titanium alloy VT1-0 (ВТ1-0) by rapidly-quenched titanium-based solder). Svarochnoe proizvodstvo = Welding engineering. 2014. No. 3. pp. 20–25.
18. Savchenko E. G., Stuchebnikov V. M., Ustinov A. A. Upravlenie kharakteristikami preobrazovateley davleniya na osnove struktur “kremniy na sapfire” (Controlling of pressure transformer characteristics on the basis of structures “silicon on sapphire”). Materiay IX Midzynarodowej naukowi-praktycznej konferencji “Perspektywiczne opracowania s nauk i technikami — 2013”. Vol. 40. Techniczne nauki. Przemyl : Nauka i studia, 2013. S. 25–29.
19. Storchay E. I. et al. Besflyusovaya payka alyuminievykh splavakh pripoyami sistemy Al – Si – Ge (Fluxless brazing of aluminium alloys by Al – Si – Ge system solders). Materialy seminara “Payka — 2007”. Voprosy vysokotemperaturnoy, nizkotemperaturnoy payki i podgotovki spetsialistov dlya payalnogo proizvodstva. Chast II (Materials of the seminar “Brazing — 2007”. Problems of high-temperature, low-temperature brazing and training of brazing industry specialists. Part II). Moscow, 2007. pp. 87–90.

Language of full-text english
Full content Buy
Back