Journals →  Tsvetnye Metally →  2014 →  #8 →  Back

HEAVY NON-FERROUS METALS
ArticleName Reaction behaviour of nickel in sulfuric acid solutions in the time of its constant current polarization
ArticleAuthor Bryukvin V. A., Dyachenko V. T., Elemesov T. B., Skryleva E. A., Bolshikh A. O.
ArticleAuthorData

A. A. Baikov Institute of Metallurgy and Materials Science, Moscow, Russia:

V. A. Bryukvin, Head of Laboratory, e-mail: brukvin@imet.ac.ru

A. O. Bolshikh, Leading Researcher

 

JSC “Norilsk Nickel MMC”, Norilsk, Russia.
V. T. Dyachenko, Head of Department of Innovation Development


Chair of Chemistry and Technology of Rare and Scattered Elements, Moscow State University of Fine Chemical Technologies, Moscow, Russia.
T. B. Elemesov, Post-Graduate Student

 

Chair of Materials Science of Semiconductors and Non-conductors, National University of Science and Technology "MISiS", Moscow, Russia.
E. A. Skryleva, Leading Researcher

Abstract

Linear voltamperometry method was used for physical-chemical analysis of electrochemical behavior of metallic nickel in sulfuric acid solutions with different potentials of its constant current polarization with definition of polarization extension of its active anode dissolution and passivation areas. For the purpose of definition of passivation mechanism, the chemical composition of nickel electrode plates surface was analyzed by X-ray photoelectron spectroscopy method. According to results of analysis of component composition of the film, anodically blocking the nickel electrode surface, it contains up to 54% of O, 40% of Ni and 4.5% (atm) of S. According to the data about bonding energy of fine spectrums of Ni2p3, O1s and S2p, the nickel electrode passivation can be considered as a consequence of its anode oxidation to trivalent state with formation of Niх(OH)уSOz hydrosulfate on its reaction surface, blocking the boundary of phase division of nickel electrode with electrolyte. Extension of nickel passivation area is limited both by nickel polarization potential (until nickel reaches trivalent state), and by water decomposition with formation of oxygen, which oxidates the formed hydrosulfate, which provides the electrode surface depassivation, accompanied by transfer of nickel in electrolyte solution. Defined regularities of polarization behavior of nickel can be used for substantiation of mechanism and mode-parametric provision of hydrometallurgical sulfuric acid processing of mineral sulfide and oxide nickel-containing raw materials, depending on the value of oxidation potential of S:L reaction system.

keywords Physical-chemical analysis, nickel, sulfuric acid, polarization potential, passivation, nickel hydrosulfate, electrode, electrolyte
References

1. Korroziya metallov i splavov (Corrosion of metals and alloys). Editorial board: N. D. Tomashov, A. I. Golubev, R. M. Altovskiy, E. N. Mirolyubov. Moscow : State Scientific-Technical Publishing House of Ferrous and Non-Ferrous Metallurgy Literature, 1963. 386 p.
2. Vorobeva G. Ya. Korrozionnaya stoykost materialov v agressivnykh sredakh khimicheskikh proizvodstv (Corrosion resistance of materials in aggressive mediums of chemical industries). Moscow : Khimiya, 1973. 816 p.
3. Bolobov V. I., Shneerson Ya. M., Lapin A. Yu. Korrozi onnaya stoykost khromonikelevykh splavov v protsesse vysokotemperaturnogo vyshchelachivaniya zolotosoderzhashchego sulfidnogo syrya (Corrosion resistance of chromium-nickel alloys in the process of high-temperature leaching of gold-containing sulfide raw materials). Tsvetnye Metally = Non-ferrous metals. 2013. No. 5 pp. 73–78.
4. Abdallah M., El-Etre A. Y. Corrosion inhibition of nickel in sulfuric acid using tween surfactants. Portugaliae electrochimica Acta. 2003. Vol. 21. pp. 315–326.
5. Sheyn A. B., Ivanova O. S., Minkh R. N. Vliyanie anionov na anodnoe rastvorenie silitsida nikelya v sernokislom elektrolite (Influence of anions on anode dissolution of nickel silicide in sulfuric acid electrolyte). Vestnik Udmurtskogo universiteta. Khimiya = Bulletin of Udmurt University. Chemistry. 2006. No. 8. pp. 62–74.
6. Podoboev A. N., Reformatskaya I. I. Nachalnye stadii passivatsii i rastvoreniya nikelya v kislykh sulfatnykh rastvorakh (First stages of passivation and dissolution of nickel in lime sulfate solutions). Zashchita metallov = Protection of Metals. 2006. Vol. 42. pp. 73–75.
7. Deo K., Melendale S. G., Vehkatachalam S. Electrochemical dissolution of nickel in sulfuric acid by alternating current. Journal of Applied Electrochemistry. 1976. Vol. 6. pp. 37–43.
8. Spravochnik po elektrokhimii (Electrochemistry reference book). Under the editorship of A. M. Sukhotin. Leningrad : Khimiya, 1988. 488 p.
9. Bryukvin V. A., Skryleva E. A., Elemesov T. B., Levin A. M., Bolshikh A. O. Mekhanizm anodnoy passivatsii 3D perekhodnykh metallov VIII gruppy v rastvorakh sernoy kisloty. Soobshchenie 1. Nikel (Mechanism of anode passivation of 3D transition metals of the VIII group in sulfuric acid solution. Part 1. Nickel). Metally = Metals. 2013. No. 6. pp. 26–29.
10. Kalashnikova M. I., Volkov L. V., Keskinova M. V. Osobennosti vzaimodeystviya oksidov nikelya s rastvorami sernoy kisloty pri vyshchelachivanii promyshlennykh ogarkov obzhiga nikelevogo kontsentrata (Peculiarities of interaction of nickel oxides with sulfuric acid solutions in the time of leaching of industrial cinders of nickel concentrate roasting). Tsvetnye Metally = Non-ferrous metals. 2011. No. 3. pp. 43–46.
11. Volkov L. V., Kalashnikova M. I. Mekhanizm rastvoreniya oksidov nikelya rastvorami sernoy kisloty v okislitelnykh usloviyakh (Mechanism of dissolution of nickel oxides by sulfuric acid solutions in oxidation conditions). Tsvetnye Metally = Non-ferrous metals. 2011. No. 8/9. pp. 101–104.

Language of full-text russian
Full content Buy
Back