Journals →  Chernye Metally →  2014 →  #4 →  Back

115th anniversary of St. Petersburg State Polytechnic University
ArticleName Interrelation between onset of crystallization and internal stresses in amorphous metallic alloys
ArticleAuthor S. L. Ratushnyak, N. O. Gonchukova, T. V. Larionova, O. V. Tolochko
ArticleAuthorData

Institute of Silicate Chemistry of the RAS (Russia, St. Petersburg):

Ratushnyak S. L., Cand. Chem., Scientifi c Fellow, e-mail: ratserg@mail.ru
Gonchukova N. O., Dr. Phys.-Math., Lead. Research Fellow

 

St. Petersburg State Polytechnic University (St. Petersburg, Russia):

Larionova T. V., Cand. Tech., Associate Prof.
Tolochko O. V., Dr. Tech., Prof.

Abstract

Metallic alloys with amorphous-crystalline structure, synthesized by rapid quenching of the melt with subsequent heat treatment, may have higher level of physical and mechanical properties as compared to amorphous or crystalline alloys used for the same application. In such alloys the nucleation of crystalline phase occurs from the glass state; so the study of crystallization process of amorphous metallic alloys is a practically important. In this paper it was assumed that the beginning of crystallization must be associated with basic laws of the relaxation of the amorphous structure, for which welldeveloped mathematical apparatus exists. For industrial amorphous metallic alloys Fe77Ni1Si9B13 (2NSR), Fe58Ni20Si9B13 (20NSR) prepared by melt-spinning method, correlation between beginning of crystallization and internal (quenching) stress relaxation has been studied. Stress relaxation was calculated in viscoelastic approximation based on phenomenological concepts of structural relaxation in glass. Such calculations can be performed for any amorphous alloys and the amorphous coatings. Onset of crystallization was studied in dilatometric experiments and the results have showed the existence of correlation between structure rearrangement, which accompanied the beginning of crystallization, and internal stress relaxation. It makes possible to evaluate time-temperature regimes of heat treatment of amorphous alloys with the purpose to form amorphous-nanocrystalline structure by using the model description of stress relaxation in amorphous metallic alloys.

keywords Amorphous alloys, structural relaxation, nano-crystallization, crystal growth, deformation, internal (quenching) stresses
References

1. Gleiter H. Materials with ultrafine grain size. Deformation of polycrystals. Proceedings of the 2nd RISO symposium on metallurgy and materials science. Roskielde : RISO National Laboratory, 1981. pp. 15–21.
2. Yakovlev E. N., Gryaznov G. M., Serbin V. I., Lapovok V. N., Trusov L. I., Ganelin V. Ya., Kapitonov E. V., Kukhar N. B., Begoulev V. V. Poverkhnost — Surface. 1983. No. 4. pp. 138–141.
3. Andrievskiy R. A., Glezer A. M. Fizika metallov i metallovedenie — The Physics of Metals and Metallography. 1999. Vol. 88, No. 1. pp. 50–73.
4. Andrievskiy R. A., Glezer A. M. Fizika metallov i metallovedenie — The Physics of Metals and Metallography. 2000. Vol. 89, No. 1. pp. 91–112.
5. Glezer A. M., Molotilov B. V., Ovcharov V. P., Utevskaya O. L. Fizika metallov i metallovedenie — The Physics of Metals and Metallography. 1987. Vol. 64, No. 6. pp. 1105–1109.
6. Akulova Yu. O., Gonchukova N. O., Larionova T. V., Tolochko O. V. Structural relaxation in amorphous substances with highly nonequilibrium structure. Journal of Non-Crystalline Solids. 2000. Vol. 261, No. 1. pp. 252–259.
7. Gonchukova N. O., Ratushnyak S. L., Tolochko O. V. Fizika i khimiya stekla — Glass Physics and Chemistry. 2011. Vol. 37, No. 4. pp. 488– 500.
8. Gonchukova N. O., Ratushnyak S. L., Stakin A. N. Fizika i khimiya stekla — Glass Physics and Chemistry. 2013. Vol. 39, No. 5. pp. 723–732.
9. Fokin V. M., Cabral A. A., Reis R. M. C. V., Nascimento M. L. F., Zanotto E. D. Critical assessment of DTA-DSC methods for the study of nucleation kinetics in glasses. Journal of Non-Crystalline Solids. 2010. Vol. 356, No. 6/8. pp. 358–367.
10. Chen H. S. Glassy metals. Reports on Progress in Physics. 1980. Vol. 43, No. 3. pp. 353–432.
11. Dorofeeva E. A., Prokoshin A. F. Fizika metallov i metallovedenie — The Physics of Metals and Metallography. 1982. Vol. 54, No. 5. pp. 946–952.
12. Gonzales G. M., Vazquez M., Vicent J. L. Determination of internal stresses distribution for a nearly-zero magnetization amorphous alloy. Journal of Magnetism and Magnetic Materials. 1986. Vol. 54/57, Part 1. pp. 261–262.
13. Zolotukhin I. V. Fizicheskie svoystva amorfnykh metallicheskikh materialov (Physical properties of amorphous metallic materials). Moscow : Metallurgiya, 1986. 176 p.
14. Mazurin O. V. Steklovanie (Vitrifying). Leningrad : Nauka, 1986. 160 p.
15. Moynihan C. T., Macedo P. B., Montrose C. J., Gupta P. K., De-Bolt M. A., Dill J. F., Dom B. E., Drake P. W., Elterman P. B., Moeller R. P., Sosabe H., Wilder J. A. Structural relaxation in vitreous materials. Annals of the New York Academy of Sciences. 1976. Vol. 279. pp. 15–35.
16. Ratushnyak S. L., Gonchukova N. O., Tolochko O. V. Fizika i khimiya stekla — Glass Physics and Chemistry. 2007. Vol. 33, No. 1. pp. 20– 33.
17. Gonchukova N. O. Fizika metallov i metallovedenie — The Physicsn of Metals and Metallography. 1994. Vol. 77, No. 3. pp. 70–80.
18. Larionova T. V., Tolochko O. V., Gonchukova N. O., Novikov E. V. Fizika i khimiya stekla – Glass Physics and Chemistry. 1996. Vol. 22, No. 3. pp. 334–338.
19. Ratushnyak S. L. Teplovoe rasshirenie amorfnykh splavov AMAG-200 i 5BDSR (Thermal expanding of amorphous alloys AMAG-200 (АМАГ-200) and 5BDSR (5БДСР)). Problemy sozdaniya i ekspluatatsii novykh tipov elektroenergeticheskogo oborudovaniya (Problems of creation and exploitation of new types of electric-energetic equipment). Saint Petersburg : Department of Electric and Energetic Problems of Russian Academy of Sciences; Institute of Silicates Chemistry of Russian Academy of Sciences, 2006. Iss. 7. pp. 201–206.
20. Gonchukova N. O., Drugov A. N. Fizika i khimiya stekla — Glass Physics and Chemistry. 2003. Vol. 29, No. 3. pp. 263–268.
21. Gonchukova N. O., Smirnov V. V., Drugov A. N. Fizika metallov i metallovedenie — The Physics of Metals and Metallography. 2005. Vol. 99, No. 5. pp. 56–61.
22. Sverkhbystraya zakalka zhidkikh splavov (Ultra-speed hardening of liquid alloys). Under the editorship of G. German. Moscow : Metallurgiya, 1986. 374 p.
23. Tikhonov A. N., Samarskiy A. A. Uravnenie matematicheskoy fiziki (Equation of mathematical physics). Moscow : Nauka, 1966. 724 p.
24. Lykov A. V. Teoriya teploprovodnosti (Heat transfer theory). Moscow : Vysshaya shkola, 1967. 600 p.
25. Granasy L., Meszaros G. M. Model of continuous casting of metallic glass ribbons. 1. The applicability of the infinite-viscous assumption to thermal history application. Materials Science and Engineering. 1985. Vol. 72, No. 1. pp. 71–83.
26. Maslov V. V., Nosenko V. K., Taranenko L. E., Brovko A. P. Fizika metallov i metallovedenie — The Physics of Metals and Metallography. 2001. Vol. 91, No. 5. pp. 47–55.
27. Glezer A. M., Molotilov B. V. Struktura i mekhanicheskiе svoystva amorfnykh splavov (Structure and mechanical properties of amorphic alloys). Moscow : Metallurgiya, 1992. 208 p.

Language of full-text russian
Full content Buy
Back