Journals →  CIS Iron and Steel Review →  2013 →  #1 →  Back

ArticleName Prediction of dendritic micro-heterogeneity of cast steel: review of models and computer-aided analysis of problems (Part 1. Models based on thermal-physical parameters)
ArticleAuthor V. M. Golod, K. I. Emelyanov, I. G. Orlova
ArticleAuthorData

Saint-Petersburg State Polytechnic University (St. Petersburg, Russia):

V. M. Golod, K. I. Emelyanov, I. G. Orlova

E-mail: cheshire@front.ru

Abstract

The paper reviews the publications concerning dependence of dendrite arm spacings of iron-based industrial alloys from the conditions of solidification. It was noted that the used thermal parameters which characterize the conditions of dendrite formation — the rate of solidification, the temperature gradient and the cooling rate — quite often are determined with significant experimental errors, are estimated on the basis of approximate relationships and often mutually correlated. It was established that the published empirical power-type models of dendrite arm spacing for carbon and low-alloy steels are characterized by a lot of the types of the parameters predictors and by scatters of their values, do not consider the effect of the alloys composition and slightly suitable for prediction of the dendritic structure. For objective assessment of uncertainties arising from the use of insufficiently large data sets and simplified method of estimation for model parameters the procedures of statistical analysis of the models adequacy for their correction and/or rejection were proposed. The comparison of results of computer modeling for a steel slabs (250 mm thickness) with 0.006, 0.06 and 0.6% C are used for analysis the evolution during solidification of the rate of crystallization and the temperature gradient under various intensity of heat extraction and natural convection of the melt. It was deduced that a radical increase in the accuracy of the analysis of the conditions of formation of the dendritic structure is provided using a developed computer model of the non-equilibrium solidification of ingots and castings on the base the thermal properties of alloys, determined by means of thermodynamic modeling, with obligatory taking into account the intense convective heat transfer in the melt.

keywords Carbon and low-alloy steel, dendritic structure, dendrite arm spacing, empirical power-type models, computer modeling, non-equilibrium crystallization
References

1. Suzuki A., Suzuki T., Nagaoka Y., Iwata Y. On secondary dendrite arm spacing in commercial carbon steels with different carbon content. Journal of the Japan Institute of Metals. 1968. Vol. 32, No. 12. pp. 1301–1305.
2. Schwerdtfeger K. Einflu der erstarrungsgeschwindigkeit auf die mikroseigerung und die interdendritische ausscheidung von Mangansulfideinschlüssen in cinem mangan und kohlenstoff enthaltenden stahl. Archiv Eisenhüttenwes. 1970. Vol. 41, No. 9. pp. 923–937.
3. Schwerdtfeger K. Einflu der erstarrungsgeschwindigkeit und des schwefegchaltes auf die durchschnittliche gröe von Mangansulfideinschlüssen in cinem mangan und kohlenstoff enthaltenden stahl. Archiv Eisenhüttenwes. 1972. Vol. 43, No. 3. pp. 201–205.
4. Edvardsson T., Fredriksson H., Svensson I. A study of the solidification process in low-carbon manganese steels. Metal Science. 1976. Vol. 10, No. 9. pp. 298– 306.
5. Jacobi H., Schwerdtfeger K. Dendrite morphology of steady state unidirectionally solidified steel. Metallurgical Transactions. 1976. Vol. 7A, No. 6. pp. 811–820.
6. Taha M.A., Jacobi H., Imagumbai M., Schwerdtfeger K. Dendrite morphology of several steady state unidirectionally solidified iron base alloys. Metallurgical Transactions. 1982. Vol. 13A, No. 12. pp. 2131–2141.
7. Steffen R., Thielmann R. Entwicklungen zum bandgieben von stahl. Stahl und Eisen. 1986. Vol. 106, No. 11. pp. 631–640.
8. Imagumbai M. Relationship between primary- and secondary – dendrite arm spacing of C-Mn steel uni-directionally solidified in steady state. ISIJ International. 1994. Vol. 34, No. 12. pp. 986–991.
9. Cabrera-Marrero J. M. et al. Macro-micro modeling of the dendritic microstructure of steel billets processed by continuous casting. ISIJ International. 1998. Vol. 38, No. 3. pp. 812–821.
10. Jacobi H., Wunnenberg K. Solidification structure and micro-segregation of unidirectionally solidified steels. Steel Research. 1999. Vol. 70, No. 8+9. pp. 362–367.
11. Weisgerber B., Hecht M., Harste K. Investigations of the solidification structure of continuously slabs. Steel Research. 1999. Vol. 70, No. 6. pp. 403–411.
12. Pierer R., Bernhard C. On the influence of carbon on secondary dendrite arm spacing in steel. Journal of Materials Science. 2008. Vol. 43, No. 21. pp. 6938– 6943.
13. Hanao M., Kawamoto M., Yamanaka A. Growth of solidified shell just below the meniscus in continuous casting mold. ISIJ International. 2009. Vol. 49, No. 3. pp. 365–374.
14. A guide to the solidification of steels. Jernkontoret, Stockholm, 1977. 162 p.
15. El-Bealy M., Thomas B. Prediction of dendrite arm spacing for low alloy steel casting processes. Metallurgical and Materials Transactions. 1996. Vol. 27B, No. 4. pp. 689–693.
16. Louhenkilpi S., Miettinen J., Holappa L. Simulation of microstructure of as-cast steels in continuous casting. ISIJ International. 2006. Vol. 46, No. 6. pp. 914–920.
17. Won Y. M., Thomas B. Simple model of microsegregation during solidification of steels. Metallurgical and Materials Transactions. 2001. Vol. 32A, No. 7. pp. 1755–1767.
18. Cicutti C., Boeri R. Development of an analytical model to predict the microsrtructure of continuously cast steel slab. Steel Research. 2000. Vol. 71, No. 8. pp. 288–294.

19. Volkova O., Heller H. P., Janke D. Microstructure and cleanliness of rapidly solidified steels. ISIJ International. 2003. Vol. 43, No. 11. pp. 1724–1732.
20. Karlinski de Barcellos V. et al. Modeling of heat transfer, dendrite microstructure and grain size in continuous casting of steels. Steel Research International. 2010. Vol. 81, No. 6. pp. 461–471.
21. Bouchard D., Kirkaldy J. Prediction of dendrite arm spacing in unsteady- and steady-state heat flow of unidirectionally solidified binary alloys. Metallurgical and Materials Transactions. 1997. Vol. 28B, No. 8. pp. 651–663.
22. Quaresma J. M. V., Santos C.A., Garsia A. Correlation between unsteady-state solidification conditions, dendrite spacing, and mechanical properties of Al-Cu alloys. Metallurgical and Materials Transactions. 2000. Vol. 31A, No. 6, No. 12. pp. 3167–3178.
23. Kurz W., Fisher D. J. Fundamentals of solidification. TransTech Publications. 1998. 305 p.
24. Golod V. M., Savelev K. D., Basin A. S. Modelirovanie i kompyuternyy analiz kristalliza tsii mnogokomponentnykh splavov na osnove zheleza (Modeling and computer-based analysis of crystallization of ironbased multi-component alloys). Saint-Petersburg : Publishing House of Polytechnical University, 2008. 372 p.
25. Golod V. M. Evolyutsionnaya model kristallizatsii stali (Evolutionary model of steel crystallization). Trudy Sankt-Peterburgskogo Gosudarstvennogo Politekhnicheskogo Universiteta, No. 510, “Materialy i khimicheskie tekhnologii” (Proceedings of Saint Petersburg State Polytechnical University, No. 510, “Materials and chemical technologies”). Saint-Petersburg : Publishing House of Polytechnical University, 2009. pp. 242–257.
26. Оhnaka I. Mathematical analysis of solute redistribution during solidification with diffusion in solid phase. Transactions of ISIJ. 1986. Vol. 26, No. 12. pp. 1045–1051.
27. Merton C. Flemings. Protsessy zatverdevaniya (Solidification Processing). Moscow : Mir, 1977. 423 p.
28. Golod V. M., Savelev K. D. Vychislitelnaya termodinamika v materialovedenii (Calculating thermodynamics in materials science). Saint-Petersburg : Publishing House of Polytechnical University, 2010. 218 p.
29. Shibata H. et al. Prediction of equiaxed crystal ratio in continuously cast steel slab by simplified columnar-to-equiaxed transition model. ISIJ International. 2006. Vol. 46, No. 6. pp. 921–930.
30. Reger M., Louhenkilpi S. Characterizing the inner structure of continuously cast sections by using heat transfer model. Materials Science Forum. 2003. Vol. 414–415. pp. 461–470.
31. Gunguly S., Choudhary S.K. Quantification of the solidification microstructure in continuously-cast high-carbon steel billets. Metallurgical and Materials Transactions. 2009. Vol. 40B, No. 3. pp. 397–404.
32. Golod V. M., Orlova I. G. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo Gosudarstvennogo Politekhnicheskogo Universiteta. Seriya “Nauka i obrazovanie” — Scientific and technical bulletin of Saint Petersburg State Polytechnical University. Series “Science and education”. 2012. No. 1(142). pp. 177–182
33. Ayvazyan S. A. Statisticheskoe issledovanie zavisimostey (Statistical investigation of dependences). Moscow : Metallurgiya, 1968. 227 p.
34. Dobosh L. Yu., Golod V. M. Otsenka pogreshnostey i utochnenie parametrov empiricheskikh zavisimostey dlya mezhduosnykh promezhutkov dendritov: sbornik “Liteynoe proizvodstvo segodnya i zavtra”. Sankt-Peterburg, Trudy 9 vserossiyskoy nauchnotekhnicheskoy konferentsii (Estimation of errors and specification of parameters of empirical dependences for dendrite arm spacings: collection “Casting production today and tomorrow”. Saint Petersburg, Proceedings of the 9-th All-Russian scientific and technical conference). 2012. pp. 442–448.
35. Amosova N. N., Kuklin B. A., Makarova S. B. et al. Veroyatnostnye razdely matematiki (Probabilistic branches of mathematics). Under the editorship of Yu. D. Maksimov. Saint Petersburg : Publishing House “Ivan Fedorov”, 2001. 592 p.

Full content Prediction of dendritic micro-heterogeneity of cast steel: review of models and computer-aided analysis of problems (Part 1. Models based on thermal-physical parameters)
Back