HEAVY NON-FERROUS METALS | |
ArticleName | Analysis of efficiency of catalytic conversion of reduced sulfur dioxide gas |
ArticleAuthor | Vasilev Yu. V., Zotikov O. V., Platonov O. I., Tsemekhman L. Sh. |
ArticleAuthorData | “Institute “Gipronikel” LLC, Saint Petersburg, Russia: O. I. Platonov, Leading Researcher, e-mail: OIPla@nickel.spb.ru Yu. V. Vasilev, Leading Researcher O. V. Zotikov, Executive Officer |
Abstract | Estimation of efficiency of combination of various catalytic processes, running in a single reactor with combined charging of different-type catalysts, required the analysis of changes of the catalytic layer activity in Claus Reactor. During the exploitation period since February 2008 till April 2009, this analysis was carried out on the elemental sulfur production area at the Copper Plant of Polar Division of “Norilsk Nickel” MMC. Comparative analysis of the data of various periods' researches have shown that actual conversion efficiency of sulfur-containing gases with combined charging of catalytic reactor (using the Co – Mo/Al2O3 catalyst of SO2 reduction, manufactured by Samara Catalysts Plant) is not higher than the conversion efficiency of ordinary Claus Process commercial-type alumina catalyst (AOK-98-59) with a disastrous loss of reliability because of low heat resistance of catalyst. At the same time, comparison of average empiric values of hydrogen and carbon monoxide conversion at various methods of catalytic reactor charging demonstrate no advantages of combined charging, using the Co – Mo/Al2O3 catalyst in activity of reduction components (H2 and CO). Nonmonotonic nature of aging of the basic layer of AOK-78-59 catalyst was revealed at maximum efficiency of the total conversion of sulfur-containing components (ηs), observed in 2 months after the start of the catalyst exploitation. There was found the absolute maximum value of the reduced gas conversion within the period of 2008–2009: ηs = (68.5±13.4)% (rel.). Occurrence of significant negative conversion (generation) of carbonyl sulphide immediately after the oxygen poisonings of the catalyst corresponds to the mechanism of two-stage catalytic conversion of carbon disulphide, accompanied by carbonyl sulphide formation at the first stage. Assessment of absolute value of carbonyl sulphide generation makes it possible to obtain the carbon disulphide content in the reduced gas, comparable to the [COS] concentration, i. e.: [CS2] ~ 2% (vol.). |
keywords | Reduced sulfur dioxide gas, conversion, Claus reactor, carbonylsulphide, aging of catalyst, combined charging, catalytic layer |
References | 1. Eremin O. G., Eremina G. A. Tsvetnye Metally — Non-ferrous metals. 1996. No. 4. pp. 21–23. |
Language of full-text | russian |
Full content | Buy |