Development of metallurgy in Russia and CIS | |
ArticleName | Dendritic micro-heterogeneity of cast steel: review of the problems and their computer-aided analysis (Part 1) |
ArticleAuthor | V. M. Golod, K. I. Emelyanov, I. G. Orlova. |
ArticleAuthorData | Chair of Physics and Chemistry of Cast Alloys and Processes, Saint-Petersburg State Polytechnical University (Saint-Petersburg, Russia): Golod V. M., Cand. Eng., Prof. Emelyanov K. I., Post-graduate Orlova I. G., Post-graduate E-mail (common): cheshire@front.ru |
Abstract | The paper reviews the publications concerning the dependence of dendrite arm spacing of iron-based industrial alloys from the conditions of solidification. It was noted that the used thermal parameters which characterize the conditions of dendrite formation — the rate of solidification, the temperature gradient and the cooling rate, — are determined quite often with significant experimental errors, are estimated on the basis of approximate relationships and often mutually correlated. It was established that the published empirical power-type models of dendrite arm spacing for carbon and low-alloy steels are characterized by a lot of the type of the parameters-predictors and by scatters of their values, and do not consider the effect of the alloys composition and therefore are slightly suitable for prediction of the dendritic structure. For objective assessment of uncertainties arising from the use of insufficiently large data sets and simplified method of estimation for model parameters, the procedures of statistical analysis of the models adequacy for their correction and/or rejection were proposed. The comparison of results of computer simulation for steel slabs (250 mm in thickness) with 0.006, 0.06 and 0.6% C content are used for analysis of the evolution of the rate of crystallization and the temperature gradient under various intensity of heat extraction and natural convection of the melt during solidification. It was deduced that a radical increase of the analysis accuracy for the conditions of formation of the dendritic structure is provided by usage of the deve loped computer model of non-equilibrium solidification of ingots and castings on the base of thermal properties of alloys. It is shown that these properties are determined by means of thermodynamic simulation, with obligatory taking into account the intense convective heat transfer in the melt. |
keywords | Carbon and low-alloy steel, dendritic structure, dendrite arm spacing, empirical powertype models, computer simulation, non-equilibrium crystallization |
References | 1. Suzuki A., Suzuki T., Nagaoka Y., Iwata Y. On secondary dendrite arm spacing in commercial carbon steels with different carbon content. Journal of the Japan Institute of Metals. 1968. Vol. 32, No. 12. pp. 1301–1305. 2. Schwerdtfeger K. Einflu. der erstarrungsgeschwindigkeit auf die mikroseigerung und die interdendritische ausscheidung von Mangansulfideinschlussen in cinem mangan und kohlenstoff enthaltenden stahl. Archiv Eisenhuttenwes. 1970. Vol. 41, No. 9. pp. 923–937. 3. Schwerdtfeger K. Einflu. der erstarrungsgeschwindigkeit und des schwefegchaltes auf die durchschnittliche gro.e von Mangansulfideinschlussen in cinem mangan und kohlenstoff enthaltenden stahl. Archiv Eisenhuttenwes. 1972. Vol. 43, No. 3. pp. 201–205. 4. Edvardsson T., Fredriksson H., Svensson I. A study of the solidification process in low-carbon manganese steels. Metal Science. 1976.Vol. 10, No. 9. pp. 298–306. 5. Jacobi H., Schwerdtfeger K. Dendrite morphology of steady state unidirectionally solidified steel. Metallurgical Transactions. 1976. Vol. 7A, No. 6. pp. 811–820. 6. Taha M.A., Jacobi H., Imagumbai M., Schwerdtfeger K. Dendrite morphology of several steady state unidirectionally solidified iron base alloys. Metallurgical Transactions. 1982. Vol. 13A, No. 12. pp. 2131– 2141. 7. Steffen R., Thielmann R. Entwicklungen zum bandgieben von stahl. Stahl und Eisen. 1986. Vol. 106, No. 11. pp. 631–640. 8. Imagumbai M. Relationship between primary- and secondary — dendrite arm spacing of C-Mn steel uni-directionally solidified in steady state. ISIJ International. 1994. Vol. 34, No. 12. pp. 986–991. 9. Cabrera-Marrero J. M. et al. Macro-micro modeling of the dendritic microstructure of steel billets processed by continuous casting. ISIJ International. 1998. Vol. 38, No. 3. pp. 812–821. 10. Jacobi H., Wunnenberg K. Solidification structure and micro-segregation of unidirectionally solidified steels. Steel Research. 1999. Vol. 70, No. 8+9. pp. 362–367. 11. Weisgerber B., Hecht M., Harste K. Investigations of the solidificationstructure of continuously slabs. Steel Research. 1999. Vol. 70, No. 6. pp. 403–411. 12. Pierer R., Bernhard C. On the influence of carbon on secondary dendrite arm spacing in steel. Journal of Materials Science. 2008. Vol. 43, No. 21. pp. 6938–6943. 13. Hanao M., Kawamoto M., Yamanaka A. Growth of solidified shell just below the meniscus in continuous casting mold. ISIJ International. 2009. Vol. 49, No. 3. pp. 365–374. 14. A guide to the solidification of steels. Jernkontoret, Stockholm, 1977. 162 p. 15. El-Bealy M., Thomas B. Prediction of dendrite arm spacing for low alloy steel casting processes. Metallurgical and Materials Transactions. 1996. Vol. 27B, No. 4. pp. 689–693. 16. Louhenkilpi S., Miettinen J., Holappa L. Simulation of microstructure of as-cast steels in continuous casting. ISIJ International. 2006. Vol. 46, No. 6. pp. 914–920. 17. Won Y. M., Thomas B. Simple model of microsegregation during solidification of steels. Metallurgical and Materials Transactions. 2001. Vol. 32A, No. 7. pp. 1755–1767. 18. Cicutti C., Boeri R. Development of an analytical model to predict the microsrtructure of continuously cast steel slab. Steel Research. 2000. Vol. 71, No. 8. pp. 288–294. 19. Volkova O., Heller H. P., Janke D. Microstructure and cleanliness of rapidly solidified steels. ISIJ International. 2003. Vol. 43, No. 11. pp. 1724–1732. 20. Karlinski de Barcellos V. et al. Modeling of heat transfer, dendrite microstructure and grain size in continuous casting of steels. Steel Research International. 2010. Vol. 81, No. 6. pp. 461–471. 21. Bouchard D., Kirkaldy J. Prediction of dendrite arm spacing in unsteady- and steady-state heat flow of unidirectionally solidified binaryalloys. Metallurgical and Materials Transactions. 1997. Vol. 28B, No. 8. pp. 651–663. 22. Quaresma J. M. V., Santos C. A., Garsia A. Correlation between unsteady-state solidification conditions, dendrite spacing, and mechanical properties of Al-Cu alloys. Metallurgical and Materials Transactions. 2000. Vol. 31A, No. 6, No. 12. pp. 3167–3178. 23. Kurz W., Fisher D. J. Fundamentals of solidification. TransTech Publications. 1998. 305 p. 24. Golod V. M., Savelev K. D., Basin A. S. Modelirovanie i kompyuternyy analiz kristalliza tsii mnogokomponentnykh splavov na osnove zheleza (Modeling and computer-based analysis of crystallization of iron-based multi-component alloys). Saint-Petersburg : Publishing House of Polytechnical University, 2008. 372 p. 25. Golod V. M. Evolyutsionnaya model kristallizatsii stali (Evolutionary model of steel crystallization). Trudy Sankt-Peterburgskogo Gosudarstvennogo Politekhnicheskogo Universiteta, No. 510, “Materialy i khimicheskie tekhnologii” (Proceedings of Saint Petersburg State Polytechnical University, No. 510, “Materials and chemical technologies”).Saint-Petersburg : Publishing House of Polytechnical University, 2009. pp. 242–257. 26. Оhnaka I. Mathematical analysis of solute redistribution during solidification with diffusion in solid phase. Transactions of ISIJ. 1986. Vol. 26, No. 12. pp. 1045–1051. 27. Flemings Merton C. Protsessy zatverdevaniya (Solidification Processing). Moscow : Mir, 1977. 423 p. 28. Golod V. M., Savelev K. D. Vychislitelnaya termodinamika v materialovedenii (Calculating thermodynamics in materials science). Saint-Petersburg: Publishing House of Polytechnical University, 2010. 218 p. 29. Shibata H. et al. Prediction of equiaxed crystal ratio in continuously cast steel slab by simplified columnar-to-equiaxed transition model. ISIJ International. 2006. Vol. 46, No. 6. pp. 921–930. 30. Reger M., Louhenkilpi S. Characterizing the inner structure of continuously cast sections by using heat transfer model. Materials Science Forum. 2003. Vol. 414–415. pp. 461–470. 31. Gunguly S., Choudhary S. K. Quantification of the solidification microstructure in continuously-cast high-carbon steel billets. Metallurgical and Materials Transactions. 2009. Vol. 40B, No. 3. pp. 397– 404. 32. Golod V. M., Orlova I. G. Nauchno-tekhnicheskie vedomosti Sankt-Peterburgskogo Gosudarstvennogo Politekhnicheskogo Universiteta. Seriya “Nauka i obrazovanie” — Scientific and technical bulletin of Saint Petersburg State Polytechnical University. Series “Science and education”. 2012. No. 1(142). pp. 177–182 33. Ayvazyan S. A. Statisticheskoe issledovanie zavisimostey (Statistical investigation of dependences). Moscow : Metallurgiya, 1968. 227 p. 34. Dobosh L. Yu., Golod V. M. Otsenka pogreshnostey i utochnenie parametrov empiricheskikh zavisimostey dlya mezhduosnykh promezhutkov dendritov: sbornik “Liteynoe proizvodstvo segodnya i zavtra”. Sankt-Peterburg, Trudy 9 vserossiyskoy nauchno-tekhnicheskoy konferentsii (Estimation of errors and specification of parameters of empirical dependences for interaxial spaces of dendrites: collection “Casting production today and tomorrow”. Saint Petersburg, Proceedings of the 9-th All-Russian scientific and technical conference). 2012. pp. 442–448. 35. Amosova N. N., Kuklin B. A., Makarova S. B. et al. Veroyatnostnye razdely matematiki (Probabilistic branches of methematics). Under the editorship of Yu. D. Maksimov. Saint Petersburg : Publishing House “Ivan Fedorov”, 2001. 592 p. |
Language of full-text | russian |
Full content | Buy |