Journals →  Chernye Metally →  2013 →  #4 →  Back

Iron and Steel Making
ArticleName Experience with long BOF campaign life and TBM bottom stirring technology
ArticleAuthor Zhao Guoguang, R. Hüsken, J. Cappel.
ArticleAuthorData

Shanghai Meishan Iron & Steel Co. (Jiangsu, China):

Guoguang Zh., Steelmaking Plant

 

Küttner GmbH & Co. KG (Essen, Germany):

Hüsken R., Mag. Eng.

 

Cappel Stahl Consulting (Essen, Germany):

Cappel J., Dr. Eng., juergen.cappel@cappel-consult.com

Abstract

TBM bottom stirring is a technology introduced worldwide to enhance the metallurgical efficiency of the BOF process. By applying this technology inert gas injection through the bottom of the BOF vessel enhances the mixing effect of the top lance blowing jet. Carbon and phosphorous profile of the investigated BOF steel operation are displayed, as well as blowing conditions of a BOF shop. Distribution of stirring gases in a BOF vessel with slag-covered bottom and walls and TBM system layout in a 150-t BOF shop are examined. Slag spla shing was introduced in BOF operations to increase vessel campaign life, but generally it negatively impacts the efficiency of the bottom stirring. [C] [O] products results, slag (% Fe) and (% Mn) results, de-phosphorization results, metallurgical performance results, slag composition variation and [C] [O] results and wear profile development in a recent basic oxygen furnace campaign are considered. Oxidation degree of steel and slag in “top blow” and “blow-stir” operations is researched, in addition to de-phosphorization efficiency. At Meishan Steel in China an operation practice was developed that successfully combines the advantages of both technologies. 150-t/heat BOF shop at Baoshan Iron & Steel Company in Meishan is shown.

keywords Basic oxygen furnace, TBM bottom stirring, mixing, top lance blowing, de-phosphorization, slag composition, oxidation, China
References

1. Zhao, G.; Zuo, K.; Guo, Z.: Appli ca tion and maintenance of TBM combined blowing technology in Meishan converter, Proc. 5th EOSC 2006, Aachen, 26.– 28. Juni 2006, S. 130/35.

2. Cappel, J.; Hüsken, R.; Fechner, R.: Iron Steel Tech. (2011) Nr. 11, S. 46/57.
3. Winterfeld, F.: LD-Prozess und kombinierte Blas verfahren, VDEh-Kon taktstudium 52/1992, Metallurgie des Eisens, Teil 2: Stahlerzeugung.
4. Krieger, W.: BMH 148 (2003) Nr. 7, S. 247/53.
5. Cappel, J.; Wünnenberg, K.: Iron Steel Tech. (2008) Nr. 11, S. 66/73; stahl u. eisen 128 (2008) Nr. 9, S. 55/66.
6. Stahlinstitut VDEh, Düsseldorf: „Plantfacts“ Da ten bank, 2008.
7. Kollmann, T.; Jandl, C.; Schenk, J.; Mizelli, H.; Höfer, W.; Viertauer, A.; Hiebler, M.: Comparison of basic oxygen furnace gas purging options, RHI Bulletin (2012) Nr. 1, S. 8/15.
8. Chuckwulebe, B.; Klimushkin, A. V.; Kuznetsov, G. V.: Iron Steel Tech. (2006) Nr. 11, S. 45/53.
9. Jalkanen, J.; Kostomo, T.: Manual of Consim-5 oxygen converter simulation, University of Technology, Helsinki, Finnland, 2005, S. 64.
10. AISI Steel Foundation [Hrsg.]: The Making, Shaping and Treating of Steel, 11. Aufl., Pittburgh, USA, 1998.
11. Bruckhaus, R.; Lachmund, H.: Iron Steel Tech. (2007) Nr. 11, S. 44/50.
12. Donayo, R.; Data, A.; Gomez, A.; Balante, W.; Perez, J.: Decrease of fume emissions in the converter by new process for high silicon and phosphorus hot metal, 17th IAS Steelmaking Conference 2009, Campana, Buenos Aires, Argentinien.
13. Senk, D. et al.: Metallurgie-Umdruck, Publications of the IEHK, RWTH Aachen, 1994/1995.
14. Chigwedu, C.; Kempgen, J.; Pluschkell, W.: stahl u. eisen 126 (2006) Nr. 12, S. 25/31.

Language of full-text russian
Full content Buy
Back