Journals →  Obogashchenie Rud →  2013 →  #1 →  Back

BENEFICIATION PROCESSES
ArticleName Effectiveness of multisensor ionometry systems and neural network modeling methods application in flotation processes laboratory studies
ArticleAuthor Romanenko S. A.
ArticleAuthorData

Outotec (St. Petersburg, Russia):

Romanenko S. A., Leading Technologist, Sergey.Romanenko@outotec.com

Abstract

The article considers new principles of flotation processes laboratory studies by means of multi-sensor ionometry systems. The experiments were conducted on the Tominskoye porphyritic copper-molybdenum deposit ore sample. A new principle of pulp electrochemical potential control by means of molybdenum electrode is substantiated experimentally and mathematically. Sulfide minerals effective flotation and depression ranges are determined. The advantages of new approach to pulp electrochemical potential control by means of molybdenum elec trode in contrast to conventionally used electrochemical potential control based on platinum electrode potential measurements are shown. A new principle of laboratory studies' results analysis by means of a neural network modeling method, permitting to reveal information processing structure regarding starting region of measured ore electrochemical characteristics with a view to develop this ore processing technology at minimal costs, is described.

keywords Sulfide minerals, flotation, pulp electrochemical potential, molybdenum electrode, ionometry, neural network modeling
References

1. Mashevskiy G. N. Obogashchenie Rud, 2006, No. 3, pp. 29–33.
2. Mashevskiy G. N., Petrov A. V., Lura M., Etelapaa M., Lamberg P. Obogashchenie Rud, 2009, No. 5, pp. 15–20.
3. Mashevskiy G. N., Petrov A. V., Romanenko S. A., Sufyanov F. S., Balmanova A. Zh.  Obogashchenie Rud, 2012, No. 1, pp. 16–20.
4. Petrov A. V., Romanenko S. A., Sufyanov F. S., Balmanova A. Zh. Obogashchenie Rud, 2012, No. 2, pp. 40–42.
5. Problemy analiticheskoy khimii (Problems of analytical chemistry). Vol. 14. Khimicheskiye sensory (Chemical sensors). Under ed. of Yu. G. Vlasov. Moscow, Nauka, 2011, 399 p.
6. Sharaf M. A., Illman D. L., Kowalski B. R. Khemometrika (Chemometrics). Transl. from Eng. by A. N. Marinichev and A. K. Charykov; under ed. of I. A. Ibragimov and A. K. Charykov. Leningrad, Khimiya, 1989, 272 p.
7. Maryanov B. M. Izbrannyye glavy khemometriki. Uchebnoye posobiye dlya khimicheskikh fakultetov vuzov (Selected chapters of Chemometrics. Manual for chemical faculties of higher schools). Tomsk, Tomsk University, 2004, 166 p.
8. Mashevskiy G. N. Obogashchenie Rud, 1983, No. 1, pp. 34–39.
9. Reznikov A. P. Obrabotka nakoplennoy informatsii v zatrudnennykh usloviyakh (Processing of savedup information in the complicated conditions). Moscow, Nauka, 1976, 236 p.
10. Kohonen T. Assotsiativnaya pamyat (Associative Memory). Transl. from Eng. V. K. Bykhovskiy. Moscow, Mir, 1980, 239 p.
11. Kohonen T. Samoorganizuyushchiyesya karty. Adaptivnyye i intellektualnyye sistemy (Selforganizing maps. Adaptive and intellectual systems). Transl. from the 3d Eng. ed. by V. N. Ageev; under ed. of Yu. V. Tyumentsev. Moscow, BINOM. Laboratoriya znaniy, 2010, 655 p.

Language of full-text russian
Full content Buy
Back