Журналы →  Tsvetnye Metally →  2012 →  №7 →  Назад

HEAVY NON-FERROUS METALS
Название A magnesia-silicate reagent for treating natural water from heavy metals emitted from the Kola Mining and Metallurgical Company (Monchegorsk area)
Автор Kremenetskaya I. P., Lashchuk V. V., Volochkovskaya E. Yu., Drogobuzhskaya S. V., Morozova T. A.
Информация об авторе

I. V. Tananaev Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials of the Russian Academy of Sciences Kola Science Center (ICTREMRM KSC RAS), Apatity, Russia:

I. P. Kremenetskaya, Senior Researcher, e-mail: kremen@chemy.kolasc.net.ru
V. V. Lashchuk, Senior Researcher

S. V. Drogobuzhskaya, Senior Laboratory Assistant Researcher

 

OJSC “Kola Mining and Metallurgical Company”, Monchegorsk, Russia:

E. Yu. Volochkovskaya, Leading Specialist

 

Mining Institute of Kola Scientific Center of Russian Academy of Sciences, Apatity, Russia:

T. A. Morozova, Researcher

Реферат

Possible uses of a serpentine-based magnesia-silicate reagent for detoxification of natural water bodies located in proximity of the Monchegorsk man-made desert are discussed. The features of the heavy-metal pollution have been analyzed statistically, applying a Tietta application software, factor analysis by the method of principal components combined with regressive analysis. The crucial factor for the state of water bodies was found to be degradation of this naturalman-made system. The package of procedures recommended for localizing the chemical pollution includes land reclamation and immobilization of ecotoxicants within the water bodies. In our experiments, water samples were treated by a magnesia-silicate reagent obtained from the olivinite ore process (sungulite and iddingsite concentrates). The level of solution purification was quite good (about 96–97%). After three months of reagent’s contact with water solutions, the residual nickel concentrations were 10–13 μg/L at pH = 8.4–8.5, which either meets the norms for water quality in fisheries or is close to them. Similar levels of purification have been obtained for copper, zinc and cobalt. Since the reagent is low cost, locally available, does not contain any xenobiotics, and can purify water to the normal level, it can be recommended for “passive” water-treatment technologies.

Ключевые слова Environmental degradation, heavy metals, nickel, copper, water purification, serpentine, magnesia-silicate reagent
Библиографический список

1. Mudd G. M. Global trends and environmental issues in nickel mining. Sulfides versus laterites, Ore Geology Reviews. 2010. Vol. 38. pp. 9–26.
2. Grawford G. A. Environmental improvements by the mining industry in the Sudbury basin of Canada. Journal of Geochemical Exploration. 1995. Vol. 52 (1–2). pp. 267–284.
3. Gundermann D. G., Hutchinson T. C. Changes in soil chemistry. 20 years after the closure of a nickel-copper smelter near Sudbury, Ontario, Canada. Journal of Geochemical Exploration. 1995. Vol. 52 (1–2). pp. 231–236.
4. Adamo P., Dudka S., Wilson M. J., McHardy W. J. Chemical and mineralogical forms of Cu and Ni in contaminated soils from the Sudbury mining and smelting region, Canada. Environmental Pollution. 1996. Vol. 91 (1). pp. 11–19.
5. Golubeva E. I., Tutubalina O. V., Govorova A. F., Shipigina E. A., Khorokhorina E. V. Ekologicheskie problemy severnykh regionov i puti ikh resheniya (Ecological problems of north regions and ways of their solving). Materialy Mezhdunarodnoy konferentsii (Materials of International Conference). Apatity : KSC RAS Publ., 2004. Part. I. pp. 175.
6. Saksin B. G., Bubnova M. B. Tikhookeanskaya geologiya — Russian Journal of Pacific Geology. 2006. Vol. 25. pp. 67–76.
7. Nriagu J. O., Wong H. K. T., Lowson G., Daniel P. Saturation of ecosystems with toxic metals in Sudbury Basin, Ontario, Canada. The Science of the Total Environment. 1998. Vol. 223 (2–3). pp. 99–117.
8. Permeable reactive barrier technologies for contaminant remediation. Available at: http://www.clu-in.org./download/rtdf/prb/reactbar.pdf.
9. Kremenetskaya I. P., Korytnaya O. P., Vasilуеva T. N. Vodoochistka. Vodopodgotovka. Vodosnabzhenie — Water purification. Water treatment. Water supply. 2008. No. 4. pp. 33–40.
10. Belonin M. D., Golubeva V. A., Skublov G. S. Faktornyy analiz v geologii (Factor analysis in geology). Moscow : Nedra, 1982. 269 p.
11. Kharman G. Sovremennyy faktornyy analiz (Modern factor analysis). Moscow : Statistika, 1972. 486 p.
12. Rodionov A. I., Klushin V. N., Sister V. G. Tekhnologicheskie protsessy ekologicheskoy bezopasnosti (Technological processes of environmental safety). Kaluga : Publishing House of N. Bochkarуеva, 2000. 800 p.
13. Pozhilenko V. I., Gavrilenko B. V., Zhirov D. V., Zhabin S. V. Geologiya rudnykh rayonov Murmanskoy oblasti (Geology of ore districts of Murmansk region). Apatity : KSC RAS Publ., 2002.
14. Alekin O. A. Obshchaya gidrokhimiya (General hygrochemistry). Leningrad : Gidrometeoizdat, 1948. 208 p.
15. Stroganov N. S., Buzinova N. S. Gidrokhimiya (Hygrochemistry). Moscow : MGU Publ., 1969. 170 p.
16. Patent RF, no. 2263546, 2005.

Language of full-text русский
Полный текст статьи Получить
Назад