Журналы →  Tsvetnye Metally →  2026 →  №1 →  Назад

MATERIALS SCIENCE
Название Determining the criterion for connecting layers during double-sided cladding of rolled sheets made of Al – 2 Cu – 1.5 Mn – 1 Zn – 0.7 Mg – 0.4 Fe – 0.4 Si alloy with technically pure aluminum based on finite element analysis
DOI 10.17580/tsm.2026.01.06
Автор Koshmin А. N., Zinoviev А. V., Khakimova А. N.
Информация об авторе

Moscow Polytechnic University, Moscow, Russia

А. N. Koshmin, Associate Professor of the Scientific Activity Sector, Candidate of Technical Sciences, e-mail: koshmin.an@misis.ru

 

National University of Science and Technology MISIS, Moscow, Russia
А. V. Zinoviev, Leading Expert of the Scientific Project of the Department of Metal Pressure Treatment, Doctor of Technical Sciences, Professor
А. N. Khakimova, Master’s Student of the Department of Metal Pressure Treatment

Реферат

The results of finite element modeling and analysis of the process of doublesided cladding by hot rolling of an aluminum alloy of the Al – Cu – Mn system doped with zinc and magnesium are presented. To verify the calculated results, experimental work has been performed on cladding in the temperature range of 300–450 oC and a relative deformation of 20–60%. As a result of the modeling, it has been found that with an increase in compression during cladding, the nature of shear deformations in the rolled layers changes significantly. At compressions of 20–30%, the magnitude of shear deformations in the cladding and main layers is 0.40 and 0.05, respectively. With an increase in the degree of compression to 40–50%, the direction of shear deformations in the cladding layer changes to the opposite, their magnitude is –0.4 in the cladding layer and 0.2 in the main one. The maximum value of the ratio of normal stresses to the flow stress of the base layer has been found in all cases in the neutral plane of the deformation zone, located within 0.7–0.8 of its length. The peak value of this ratio is reached at compressions of 50% and 60% and at a rolling temperature of 450 oC in both cases is 2.7 (211 to 77 and 237 to 87 MPa, respectively). As a result of the experiment, during hot cladding with a combination of temperatures and compressions in the ranges of 300–375 oC and 20–30%, respectively, the connection of the layers has not been achieved. Based on the results of the analysis, a calculation criterion is proposed for predicting the possibility of connecting the layers of the studied aluminum alloys during hot cladding and evaluating the resulting peeling strength of the layers.
The research was carried out at expense of the grant of the Russian Science Foundation No. 23–79–01172, https://rscf.ru/project/23–79–01172/.

Ключевые слова Finite element modeling, cladding, hot rolling, deformation zone, aluminum alloy, flow stress, plastic deformation
Библиографический список

1. Kammer C. Aluminum and aluminum alloys. Springer Handbook of Materials Data. Ed. by Warlimont H., Martienssen W. Springer Handbooks, Springer, Cham, 2018. pp. 161–197. DOI: 10.1007/978–3–319–69743–7_6
2. Sanders R., Staley J. A history of wrought aluminum alloys and applications. Properties and selection of aluminum alloys. Ed. by Anderson K., Weritz J., Kaufman J. G. ASM International, Ohio, 2019. pp. 157–201. DOI:
10.31399/asm.hb.v02b.a0006516
3. Kermanidis T. Aircraft aluminum alloys: Applications and future trends. Revolutionizing aircraft materials and processes. Ed. by Pantelakis S., Tserpes K., Springer, Cham, 2020. pp. 21–55. DOI: 10.1007/978–3–030–35346–9_2
4. Khangholi S. N., Javidani M., Maltais A. et al. Review on recent progress in Al – Mg – Si 6xxx conductor alloys. Journal of Materials Research. 2022. Vol. 37. рр. 670–691. DOI: 10.1557/s43578–022–00488–3
5. Siddesh Kumar N. M., Dhruthi, Pramod G. K., Samrat P., Sadashiva M. A critical review on heat treatment of aluminium alloys. Materials Today: Proceedings. 2022. Vol. 58. рр. 71–79. DOI: 10.1016/j.matpr.2021.12.586
6. Zhu H., Li J. Advancements in corrosion protection for aerospace aluminum alloys through surface treatment. International Journal of Electrochemical Science. 2024. Vol. 19, Iss. 2. 100487. DOI: 10.1016/j.ijoes.2024.100487
7. Bhat K. U., Panemangalore D. B., Kuruveri S. B., John M., Menezes P. L. Surface modification of 6xxx series aluminum alloys. Coatings. 2022. Vol. 12. 180. DOI: 10.3390/coatings12020180
8. Bolton W., Higgins R. A. Materials for engineers and technicians (7th ed.). Routledge, London, 2020. 460 p. DOI: 10.1201/9781003082446
9. Szabó G., Mertinger V., Zupkó I., Mikó T. Technological investigation of clad sheet bonding by hot rolling. Key Engineering Materials. 2015. Vols. 651–653. pp. 243–247. DOI: 10.4028/www.scientific.net/kem.651–653.243
10. Zinong T., Bing Z., Jun J., Zhiqiang L., Jianguo L. A study on the hot roll bonding of aluminum alloys. Procedia Manufacturing. 2020. Vol. 50. рр. 56–62. DOI: 10.1016/j.promfg.2020.08.011
11. Xu W., Xia C., Ni C. Numerical simulation and experimental verification of hot roll bonding of 7000 series aluminum alloy laminated materials. Metals. 2024. Vol. 14. 551. DOI: 10.3390/met14050551
12. Carta M., Buonadonna P., Reggiani B., Donati L., Aymerich F., El Mehtedi M. Effect of temperature and strain on bonding of similar АА3105 aluminum alloys by the roll bonding process. Metals. 2024. Vol. 14. 920. DOI: 10.3390/met14080920
13. Khan H. A., Asim K., Akram F., Hameed A., Khan A., Mansoor B. Roll bonding processes: state – of – the – art and future perspectives. Metals. 2021. Vol. 11. 1344. DOI: 10.3390/met11091344
14. Zixuan L. I., Rezaei S., Tao W., Jianchao H., Xuedao S. H. U., Pater Z., Huang Q. Recent advances and trends in roll bonding process and bonding model: A review. Chinese Journal of Aeronautics. 2023. Vol. 36. рр. 36–74. DOI: 10.1016/j.cja.2022.07.004
15. Liu Z., Kramer A., Lohmar J. et al. The adaption, evaluation and application of a semi–empirical bond strength model for the simulations of multi–pass hot roll bonding of aluminium alloys. International Journal of Material Forming. 2023. Vol. 16. 71. DOI: 10.1007/s12289–023–01795–8
16. Kovalev S. I., Koryagin N. I., Shirkov I. V. Stresses and deformations during flat rolling. Moscow : Metallurgiya, 1982. 255 p.
17. Kobelev A. G., Lysak V. I., Chernyshev V. N., Kuznetsov E. V. Materials science and technology of composite materials. Moscow : Intermet Inzhiniring, 2006. 366 p.
18. Kolpashnikov A. I. Rolling of light alloy sheets. Moscow : Metallurgiya, 1970. 230 p.
19. Zinoviev A. B., Kolpashnikov A. I., Polukhin P. I. et al. Technology of pressure treatment of non-ferrous metals and alloys. Moscow : Metallurgiya, 1992. 511 p.
20. Shatalov R. L., Kulikov M. A. Influence of outer parts of a strip on the deformation and force parameters of thin – sheet rolling. Metallurgist. 2020. Vol. 64. рр. 687–698. DOI: 10.1007/s11015–020–01045–1
21. Saevarsdottir G., Magnusson T., Kvande H. Reducing the carbon footprint: primary production of aluminum and silicon with changing energy systems. Journal of Sustainable Metallurgy. 2021. Vol. 7. рр. 848–857. DOI: 10.1007/s40831–021–00429–0
22. Shen A., Zhang J. Technologies for CO2 emission reduction and low–carbon development in primary aluminum industry in China: A review. Renewable and Sustainable Energy Reviews. 2024. Vol. 189. 113965. DOI: 10.1016/j.rser.2023.113965
23. Zhao Yu., Zhang W., Yang Ch., Zhang D., Wang Zh. Effect of Si on Fe–rich intermetallic formation and mechanical properties of heat–treated Al – Cu – Mn – Fe alloys. Journal of Materials Research. 2018. Vol. 33. рр. 898–911. DOI: 10.1557/jmr.2017.441
24. Belov N. A., Akopyan T. K., Korotkova N. O., Cherkasov S. O., Yakovleva A. O. Effect of Fe and Si on the phase composition and microstructure evolution in Al – 2 wt % Cu – 2 wt % Mn alloy during solidification, cold rolling and annealing. JOM. 2021. Vol. 73. рр. 3827–3837. DOI: 10.1007/s11837–021–04907–4
25. Belov N. A., Alabin A. N., Matveeva I. A. Optimization of phase composition of Al – Cu – Mn – Zr – Sc alloys for rolled products without requirement for solution treatment and quenching. The Journal of Alloys and Compounds. 2014. Vol. 583. рр. 206–213. DOI: 10.1016/j.jallcom.2013.08.202
26. Belov N. A., Cherkasov S. O., Korotkova N. O., Yakovleva A. O., Tsydenov K. A. Effect of iron and silicon on the phase composition and microstructure of the Al – 2 % Cu – 2 % Mn (wt %) cold rolled alloy. Physics of Metals and Metallography. 2021. Vol. 122. рр. 1095–1102. DOI: 10.1134/S0031918X2111003X
27. Akopyan T. K., Letyagin N. V., Belov N. A., Fortuna A. S., Nguen X. D. The role of Sn trace addition in the precipitation behavior and strengthening of the wrought Al – Cu – Mn-based alloy. The Journal of Materials Science. 2023. Vol. 58. рр. 8210–8229. DOI: 10.1007/s10853–023–08513–4
28. Belov N. A., Shurkin P. K., Korotkova N. O., Cherkasov S. O. The effect of heat treatment on the structure and mechanical properties of cold–rolled sheets made of Al – Cu – Mn alloys with varying copper to manganese ratios. Tsvetnye Metally. 2021. Vol. 9. рр. 80–86.

29. Belov N., Akopyan T., Tsydenov K., Cherkasov S., Avxentieva N. Effect of Fe–bearing phases on the mechanical properties and fracture mechanism of Al – 2 wt. % Cu – 1.5 wt. % Mn (Mg, Zn) non–heat treatable sheet alloy. Metals. 2023. Vol. 13. 1911. DOI: 10.3390/met13111911
30. Belov N., Akopyan T., Tsydenov K., Letyagin N., Fortuna A. Structure evolution and mechanical properties of sheet Al – 2 Cu – 1.5 Mn – 1 Mg – 1 Zn (wt.%) alloy designed for Al20Cu2Mn3 disperoids. Metals. 2023. Vol. 13,
Iss. 8. 1442. DOI: 10.3390/met13081442
31. Tsydenov K. A., Belov N. A. Phase composition and structure of Al – Cu – Mn – Mg – Zn – Fe – Si alloys containing 2% Cu and 1.5 % Mn. Physics of Metals and Metallography. 2024. Vol. 125. рр. 709–720. DOI: 10.1134/S0031918X24600556
32. Belov N. A., Tsydenov K. A., Drits A. M. A method for producing coldrolled sheets from a recycled aluminum alloy. Patent RF, No. 2 826055С1. Applied: 09.02.2024. Published: 03.09.2024.
33. Danilin V. N., Aleshchenko A. S., Danilin A. V., Koshmin A. N. Simulation of taper heating and variable pressing rate to improve extrusion performance for high-strength aluminum alloys. Modelling and Simulation in Materials Science and Engineering. 2024. Vol. 32. 065006. DOI: 10.1088/1361–651X/ad56a6
34. Polukhin P. I., Gun G. Ya., Galkin A. M. Resistance to plastic deformation of metals and alloys. Reference book. Moscow : Metallurgiya, 1983. 352 p.
35. Arkulis G. E. Joint plastic deformation of different metals. Moscow : Metal lurgiya, 1964. 275 p.
36. Koshmin A., Zinoviev A., Cherkasov S., Mahmoud Alhaj Ali A., Tsydenov K., Churyumov A. Finite el ement modeling and experimental verification of a new aluminum Al – 2% Cu – 2% Mn alloy hot cladding by flat rolling. Metals. 2024. Vol. 14. 852. DOI: 10.3390/met14080852
37. Qin Q., Zhang D., Zang Y., Guan B. A simulation study on the multi–pass rolling bond of 316L/Q345R stainless clad plate. Advances in Mechanical Engineering. 2015. Vol. 7. рр. 1–13. DOI: 10.1177/1687814015594313
38. He Z., Chu Z., Shuang Y., Gou Y. The bonding mechanism and experimental verification of pilger hot rolling clad tube. Advances in Materials Science and Engineering. 2020. Vol. 2020. 2689370. DOI: 10.1155/2020/2689370
39. Yong J., Dashu P., Dong L., Luoxing L. Analysis of clad sheet bonding by cold rolling. The Journal of Materials Processing Technology. 2000. Vol. 105. pp. 32–37. DOI: 10.1016/S0924–0136(00)00553–7
40. Pan S. C., Huang M. N., Tzou G. Y., Syu S. W. Analysis of asymmetrical cold and hot bond rolling of unbounded clad sheet under constant shear friction. The Journal of Materials Processing Technology. 2006. Vol. 177. pp. 114–120. DOI: 10.1016/j.jmatprotec.2006.04.071

Language of full-text русский
Полный текст статьи Получить
Назад