Журналы →  Tsvetnye Metally →  2026 →  №1 →  Назад

COMPOSITES AND MULTIPURPOSE COATINGS
Название Structure formation of cast endogenously reinforced aluminum matrix composite materials during complex treatment of melts by physical and chemical methods
DOI 10.17580/tsm.2026.01.03
Автор Deev V. B., Prusov Е. S., Ri E. Kh., Ermakov М. А.
Информация об авторе

Vladimir State University named after Alexander Grigorievich and Nikolai Grigorievich Stoletovs, Vladimir, Russia1 ; Moscow Polytechnic University, Moscow, Russia2 ; National University of Science and Technology MISIS, Moscow, Russia3

V. B. Deev*, Chief Researcher1, Head of the Department of Welding Production Technology and Equipment2, Professor of the Department of Metal Pressure Treatment3, Doctor of Technical Sciences, Professor, e-mail: deev.vb@mail.ru

 

Vladimir State University named after Alexander Grigorievich and Nikolai Grigorievich Stoletovs, Vladimir, Russia

Е. S. Prusov, Professor of the Department of Materials Science and Power Engineering, Doctor of Technical Sciences, Associate Professor

 

The Pacific National University, Khabarovsk, Russia

E. Kh. Ri, Head of the Higher School of Industrial Engineering of the Polytechnic Institute, Doctor of Technical Sciences, Professor

М. А. Ermakov, Associate Professor of the Higher School of Industrial Engineering of the Polytechnic Institute, Candidate of Technical Sciences

 

*Corresponding author.

Реферат

The studies results of the effect of complex modifying treatment during melting and crystallization using physical (thermo-speed treatment (TST), irradiation with nanosecond electromagnetic pulses (NEP)) and chemical (modification with alkaline or alkaline earth metals) methods on the processes of structure formation during crystallization of cast aluminum matrix composite materials based on the pseudobinary Al – Mg2Si system in the hypereutectic area of compositions (for example, 15 and 25% (wt.) Mg2Si) are shown. Sets of experimental melts have been carried out to produce endogenously reinforced aluminum matrix composites under the combined influence of TST (from 900°C), calcium modification and irradiation of the melt with NEP during crystallization with variable pulse amplitude parameters (0, 15, 40 kV). During the complex processing of Al – 15Mg2Si – Ca composites, an increase in the total number of Mg2Si particles has been noted (with their grinding by an average of 27–30% at NEP amplitude of 40 kV compared with the composite obtained without applying NEP), but without noticeable morphological changes. For Al – 25Mg2Si – 0.3Ca composites, the dendrite-like morphology of Mg2Si is recorded in all cases, although with a similar fragmenting effect of NEP upon irradiation during crystallization (by 23–25% at NEP amplitude of 40 kV), exhibited in the crushing of Mg2Si particles (with a transition through individual inclusions to compact morphology) and a slight change in the morphology of pseudobinary eutectics ( + Mg2Si). The data of X-ray microanalysis show that the application of NEP during crystallization leads to a local redistribution of elements (Al, Mg, Si, Ca) in the volume of the material, which significantly increases the effectiveness of the calcium modifying effect with additional treatment by physical methods.

The research was carried out at the expense of the grant of the Russian Science Foundation No. 20-19-00687-P, https://rscf.ru/project/23-19-45019 / .

Ключевые слова Aluminum matrix composite materials, complex modification, crystallization, structure formation, pulsed electromagnetic treatment.
Библиографический список

1. Campbell J. Complete casting handbook. 2nd ed. Oxford : Butterworth Heinemann, 2015. 1054 p.
2. Easton M. A., Qian M., Prasad A., St. John D. H. Recent advances in grain refinement of light metals and alloys. Current Opinion in Solid State and Materials Science. 2016. Vol. 20. pp. 13–24.
3. Deev V. B., Prusov E. S., Kutsenko A. I. Theoretical and experimental evaluation of the effectiveness of aluminum melt treatment by physical methods. Metallurgia Italiana. 2018. Vol. 110, No. 2. pp. 16–24.
4. Lee S. I., Kayani S. H., Lee Y. H., Kim B. J. et al. The effect of melt thermal-rate treatment on precipitation hardening and mechanical properties of Al – Si – Mg alloys. Journal of Materials Research and Technology. 2024. Vol. 3. pp. 2704–2717.
5. Wang Q., Geng H., Wang F., Lin X., Wang C. Effect of parameters of thermal-rate treatment of melt on iron-containing phases in alloy Al – 15% Si – 2.7% Fe. Metal Science and Heat Treatment. 2016. Vol. 58. pp. 405–410.
6. Eskin D. G. Ultrasonic processing of molten and solidifying aluminium alloys: overview and outlook. Materials Science and Technology. 2017. Vol. 33, Iss. 6. pp. 636–645.
7. Chirita G., Stefanescu I., Soares D., Silva F. S. Influence of vibration on the solidification behaviour and tensile properties of an Al – 18 wt% Si alloy. Materials and Design. 2009. Vol. 30. pp. 1575–1580.
8. Chen H., Jie J., Fu Y., Ma H., Li T. Grain refinement of pure aluminum by direct current pulsed magnetic field and inoculation. Transactions of Nonferrous Metals Society of China. 2014. Vol. 24. pp. 1295–1300.
9. Haghayeghi R., de Paula L.C., Zoqui E. J. Comparison of Si refinement efficiency of electromagnetic stirring and ultrasonic treatment for a hypereutectic Al–Si alloy. Journal of Materials Engineering and Performance. 2017. Vol. 26. pp. 1900–1907.
10. Krymsky V. V., Shaburova N. A., Litvinova E. V. Microstructure and properties of cast metal treated with electromagnetic pulses while in molten state. Materials Science Forum. 2016. Vol. 843. pp. 106–110.
11. Prusov E. S., Panfilov A. A., Kechin V. A. Role of powder precursors in production of composite alloys using liquid-phase methods. Russian Journal of Non-Ferrous Metals. 2017. Vol. 58, No. 3. pp. 308–316.
12. Bai G., Liu Z., Lin J., Yu Z. et al. Effects of the addition of lanthanum and ultrasonic stirring on the microstructure and mechanical properties of the in situ Mg2Si/Al composites. Materials and Design. 2013. Vol. 90. pp. 424–432.
13. Akhlaghi A., Noghani M., Emamy M. The effect of La-intermetallic compounds on tensile properties of Al–15%Mg2Si in-situ composite. Procedia Materials Science. 2015. Vol. 11. pp. 55–60.
14. Emamy M., Emami A. R., Khorshidi R., Ghorbani M. R. The effect of Fe-rich intermetallics on the microstructure, hardness and tensile properties of Al – Mg2Si die-cast composite. Materials and Design. 2013. Vol. 46. pp. 881–888.
15. Ghorbani M. R., Emamy M., Khorshidi R., Rasizadehghani J., Emami A. R. Effect of Mn addition on the microstructure and tensile properties of Al – 15%Mg2Si composite. Materials Science and Engineering A. 2012. Vol. 550. pp. 191–198.
16. Prusov E., Deev V., Rakhuba E. Aluminum matrix in-situ composites reinforced with Mg2Si and Al3Ti. Materials Today: Proceedings. 2019. Vol. 11. Part 1. pp. 386–391.
17. Wu X., Zhang G., Wu F. Microstructural characteristics of Mg2Si/Al composite under different superheat and electromagnetic stirring. Rare Metal Materials and Engineering. 2015. Vol. 44, Iss. 3. pp. 576–580.
18. Seth P. P., Parkasha O., Kumar D. Structure and mechanical behavior of in situ developed Mg2Si phase in magnesium and aluminum alloys – a review. RSC Advances. 2020. Vol. 10. pp. 37327–37345.
19. Deev V., Rakhuba E., Prusov E. Physical methods of melt processing at production of aluminum alloys and composites: opportunities and prospects of application. Materials Science Forum. 2019. Vol. 946. pp. 655–660.
20. Nanda P. I., Ghandvar H., Arafat A. Microstructural evolution and tensile properties of Al–20 wt%Mg2Si–0.2 wt%Ba composite solidified under different cooling rates. International Journal of Lightweight Materials and Manufacture. 2024. Vol. 7, Iss. 2. pp. 260–268.
21. Li C., Wu Y.Y., Li H., Liu X.F. Morphological evolution and growth mechanism of primary Mg2Si phase in Al – Mg2Si alloys. Acta Materialia. 2011. Vol. 59, Iss. 3. pp. 1058–1067.
22. Khorshidi R., Honarbakhsh-Raouf A., Mahmudi R. Effect of minor Gd addition on the microstructure and creep behavior of a cast Al – 15Mg2Si in situ composite. Materials Science and Engineering: A. 2018. Vol. 718. pp. 9–18.
23. Wu X. F., Zhang G. G., Wu F. F. Microstructure and dry sliding wear behavior of cast Al – Mg2Si in-situ metal matrix composite modified by Nd. Rare Metals. 2013. Vol. 32. pp. 284–289.
24. Si Y. Effect of Pr modification treatment on the microstructure and mechanical properties of cast Al – Mg2Si metal matrix composite. Advanced Materials Research. 2014. Vol. 936. pp. 23–27.
25. Akhlaghi A., Noghani M., Emamy M. The effect of La-intermetallic compounds on tensile properties of Al – 15%Mg2Si in-situ composite. Procedia Materials Science. 2015. Vol. 11. pp. 55–60.
26. Jin Y., Fang H., Chen R., Wang J. et al. Morphological modification of Mg2Si phase and strengthening mechanism in Mg2Si/Al composites by Eu addition and T6 heat treatment. Journal of Materials Science & Technology. 2023. Vol. 159. pp. 151–162.
27. Yu H.-C., Men Y.-Z., Yang S.-G., Liu H. et al. Morphology evolution of primary Mg2Si in Ca-modified Al – Mg2Si alloy with various contents of Mg/Si. CrystEngComm, 2022. Vol. 24. pp. 107–118.
28. Ghandvar H., Jabbar K. A., Idris M. H., Ahmad N. et al. Influence of barium addition on the formation of primary Mg2Si crystals from Al – Mg – Si melts. Journal of Materials Research and Technology. 2021. Vol. 11. pp. 448–465.
29. Wang D., Zhang H., Han X., Shao B. et al. The analysis of strontium modification on microstructure and mechanical properties of Al – 25% Mg2Si in situ composite. Journal of Materials Engineering and Performance. 2017. Vol. 26. pp. 4415–4423.
30. Hadian R., Emamy M., Varahram N., Nemati N. The effect of Li on the tensile properties of cast Al – Mg2Si metal matrix composite. Materials Science and Engineering: A. 2008. Vol. 490, Iss. 1–2. pp. 250–257.
31. Prusov E. S., Deev V. B., Aborkin A. V., Ri E. K., Rakhuba E. M. Structural and morphological characteristics of the friction surfaces of in-situ cast aluminum matrix composites. Journal of Surface Investigation. 2021. Vol. 15, No. 6. pp. 1332–1337.
32. Zhang J., Zhao Y., Xu X., Liu X. Effect of ultrasonic on morphology of primary Mg2Si in in-situ Mg2Si/Al composite. Transactions of Nonferrous Metals Society of China. 2013. Vol. 23, Iss. 10. pp. 2852–2856.
33. Jin Y., Fang H., Chen R., Sun S. et al. Graded distribution and refinement of Mg2Si in Al – Mg2Si alloy prepared by traveling magnetic field. Journal of Materials Research and Technology. 2023. Vol. 24. pp. 2319–2331.
34. Deev V. B., Prusov E. S., Ri E. Kh. Structural optimization of cast in-situ aluminum matrix composites: challenges and opportunities. Non-ferrous Metals. 2024. No.1. pp. 41–48.
35. Deev V. B., Prusov E. S., Ri E. H. Microstructural modification of in-situ aluminum matrix composites via pulsed electromagnetic processing of crystallizing melt. Non-ferrous Metals. 2023. No. 1. pp. 36–40.
36. Deev V. B., Prusov E. S., Ree E. Kh., Kim E. D. Influence of treatment of melts by nanosecond electromagnetic pulses on the distribution of elements in the structure of cast aluminum matrix composites. Tsvetnye Metally. 2023. No. 7. pp. 66–71.
37. Shaburova N., Krymsky V., Moghaddam A.O. Theory and practice of using pulsed electromagnetic processing of metal melts. Materials. 2022. Vol. 15, Iss. 3. 1235.
38. Deev V. B., Ri E. H., Prusov E.S , Ermakov M. A., Goncharov A. V. Grain refinement of casting aluminum alloys of the Al – Mg – Si system by processing the liquid phase using nanosecond electromagnetic pulses. Russian Journal of Non-Ferrous Metals. 2021. Vol. 62, No. 5. pp. 522–530.
39. Bao X., Ma Y., Xing S., Liu Y., Shi W. Effects of pulsed magnetic field melt treatment on grain refinement of Al – Si – Mg – Cu – Ni alloy direct-chill casting billet. Metals. 2022. Vol. 12, Iss. 7. 1080.
40. Krymsky V., Shaburova N. Applying of pulsed electromagnetic processing of melts in laboratory and industrial conditions. Materials. 2018. Vol. 11. 954.

Language of full-text русский
Полный текст статьи Получить
Назад