Журналы →  Tsvetnye Metally →  2026 →  №1 →  Назад

KOLA MINING AND METALLURGICAL COMPANY: ON THE WAY OF SUSTAINABLE DEVELOPMENT
Название On the possibility of natrization of the high-nickel precursor Ni0,87Co0,1Mn0,03(OH)2 to obtain cathode materials for sodium-ion batteries
DOI 10.17580/tsm.2026.01.02
Автор Kosov Ya. I., Larina М. V., Shvedov S. N., Olyazaev А. E.
Информация об авторе

LLC Institute Gipronikel, Saint Petersburg, Russia
Ya. I. Kosov, Chief Researcher, Candidate of Technical Sciences, e-mail: kosovyai@nornik.ru

 

Nornickel Sputnik LLC, Saint Petersburg, Russia
М. V. Larina, Chief Manager

 

NorNickel’s Polar Division, Norilsk, Russia
S. N. Shvedov, Senior Manager

 

JSC Kolskaya MMC, Monchegorsk, Russia
А. E. Olyazaev, Technologist

Реферат

The demand for rechargeable batteries with reversible efficient electrochemical energy storage and conversion is constantly growing. Experts primarily associate the high potential of using sodium-ion batteries (SIB) with energy storage systems. However, publications devoted to the production of cathode materials for sodium-ion batteries (including from precursors used for lithiumion batteries) do not sufficiently cover the issue of using high-nickel layered oxides. This makes it urgent to study the possibility of natrization of highnickel materials. In this regard, studies have been conducted on the effect of high-temperature synthesis conditions on the microstructure of the obtained powders of cathode materials for SIB when working with an NMC precursor and different sources of sodium (sodium carbonate and hydroxide). In order to establish the mechanism and expand the theoretical base in the field of synthesis of cathode materials for sodium-ion systems, a comparative thermoanalytical study of the process of high-temperature natrization using sodium carbonate and hydroxide in the mixture has been performed. The morphology, chemical and phase composition of the particles of the obtained cathode materials have been studied using scanning electron microscopy and X-ray spectral microanalysis. As a result of experimental studies using sodium hydroxide as a source, samples with a high degree of natrization have been obtained. When using sodium carbonate, the material is practically not natriated. Optimization of the conditions of materials natrization is one of the promising research directions in the field of obtaining cathode materials for SIB.

Ключевые слова Сathode materials, lithium-ion batteries, sodium-ion batteries, natrization, roasting, sodium carbonate, sodium hydroxide
Библиографический список

1. Kulova T. L., Skundin A.M. From lithium-ion to sodium-ion batteries. Elektrokhimicheskaya energetika. 2016. Vol. 16, No. 3. pp. 122–150. DOI: 10.18500/1608-4039-2016-16-3-122-150
2. Rezepova D. О., Kosova N. V. New electrode materials for sodium-ion and hybrid sodium-lithium-ion batteries: synthesis, structure and electrochemical properties. Nauka. Tekhnologii. Innovatsii : Collection of scientific papers : in 9 parts (Novosibirsk, 05–09 December 2016). Part 3. Novosibirsk : Novosibirsk State Technical University, 2016. pp. 179, 180.
3. Oprah D. P., Tsvetnikov A. K., Sinebryukhov S. L., Sergienko V. I., Gnedenkov S. V. Electrode materials with improved characteristics for lithium and sodium electrochemical current sources: results and prospects (review). Vestnik DVO RAN. 2021. No. 5. pp. 65–78. DOI: 10.37102/0869-7698_2021_219_05_06
4. Skundin A.M., Kulova T. L., Yaroslavtsev A. B. Sodium-ion batteries (review). Elektrokhimiia. 2018. Vol. 54, No. 2. pp. 131–174. DOI: 10.7868/S0424857018020019
5. Wang Q., Mariyappan S., Rousse G., Tarascon J. M. et al. Unlocking anionic redox activity in O3-type sodium 3d layered oxides via Li substitution. Nature Materials. 2021. Vol. 20. pp. 353–361.
6. Rangasamy V. S., Zhang L., Seo J. W., Locquet J.-P., Thayumanasundaram S. Enhanced electrochemical performance of Na2/3[Mn0.55Ni0.30Co0.15]O2 positive electrode in sodium-ion batteries by functionalized multi-walled car-/bon nanotubes. Electrochimica Acta. 2017. Vol. 237. pp. 29–36.
7. Zhao C., Lu Y., Chen L., Hu Y. Ni-based cathode materials for Na-ion batteries. Nano Research. 2019. Vol. 12. pp. 2018–2030.
8. Sun Xin, Ji Xiao-Yang, Xu Hao-Yang, Zhang Chen-Yu et al. Sodium insertion cathode material Na0.67[Ni0.4Co0.2Mn0.4]O2 with excellent electrochemical properties. Electrochimica Acta. 2016. Vol. 208. pp. 142–147.
9. Xu H., Zong J., Chen S., Ding F. et al. Synthesis and evaluation of NaNi0.5Co0.2Mn0.3O2 as a cathode material for Na-ion battery. Ceramics Inter national. 2016. Vol. 42, Iss. 10. pp. 12521–12524.
10. You Y., Dolocan A., Li W., Manthiram A. Understanding the air-exposure degradation chemistry at a nanoscale of layered oxide cathodes for sodium-ion batteries. Nano Letters. 2019. Vol. 19, Iss. 1. pp. 182–188.
11. Sun H. H., Hwang J. Y., Yoon C. S., Heller A., Mullins C. B. Capacity degradation mechanism and cycling stability enhancement of AlF3-coated nanorod gradient Na[Ni0.65Co0.08Mn0.27]O2 cathode for sodium-ion batteries. ACS Nano. 2018. Vol. 12, Iss. 12. pp. 12912–12922.
12. Jin Y., Le P. M. L., Gao P., Xu Y. et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nature Energy. 2022. Vol. 7, Iss. 8. pp. 718–725.
13. Hwang J. Y., Oh S. M., Myung S. T., Chung K. Y. et al. Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries. Nature Communications. 2015. Vol. 6. 6865.
14. Zhou P. F., Liu X. L., Weng J. Y., Wang L. et al. Synthesis, structure, and electrochemical properties of O’3-type monoclinic NaNi0.8Co0.15Al0.05O2 cathode materials for sodium-ion batteries. Journal of Materials Chemistry A. 2019. Vol. 7, Iss. 2. pp. 657–663.
15. Mingjun Xiao, Huizhen Sun. Review on modification strategy of layered transition metal oxide for sodium ion battery cathode material. Journal of Energy Storage. 2025. Vol. 114, Part A. 115824. DOI: 10.1016/j.est.2025.115824
16. Yadav V., Patel A., Tiwari A., Singh S. P. et al. A novel hybrid sodium ion capacitor based on Na [Ni0.60Mn0.35Co0.05]O2 battery type cathode and presodiated D-Ti3C2Tx pseudocapacitive anode. Journal of Alloys and Compounds. 2024. Vol. 1006. 176326.
17. Gonçalves J. M., Silva G. T. M., Zanin H. Ni-rich layered cathodes in sodium-ion batteries: perspectives or déjà vu? Journal of Materials Chemistry A. 2024. Vol. 12, Iss. 29. pp. 17756–17770.
18. Kosov Ya. I., Bogatyrev D. M., Ivanova E. A., Pakalnis V. V. Study of pyrometallurgical operation variants for the technology of producing high-nickel cathode materials of the NMC type for lithium-ion batteries. Tsvetnye Metally. 2024. No. 10. pp. 63–70.

Language of full-text русский
Полный текст статьи Получить
Назад