Журналы →  Обогащение руд →  2025 →  №6 →  Назад

ПРИРОДООХРАННЫЕ ТЕХНИКА И ТЕХНОЛОГИЯ
Название Комплекс послойной механизированной обратной закладки выработанного пространства для утилизации отходов обогащения
DOI 10.17580/or.2025.06.09
Автор Королев Р. И., Уразов Д. В., Юнгмейстер Д. А., Сержан С. Л., Федоров Е. В.
Информация об авторе

ООО «ПроТех Инжиниринг — Санкт-Петербург», Санкт-Петербург, РФ

Королев Р. И., главный специалист, канд. техн. наук, rom8592009@yandex.ru

Уразов Д. В., начальник управления, канд. техн. наук, denis.urazov@pte.eurochem.ru

 

Санкт-Петербургский горный университет императрицы Екатерины II, Санкт-Петербург, РФ

Юнгмейстер Д. А., профессор, д-р техн. наук, iungmeister@yandex.ru

Сержан С. Л., доцент, канд. техн. наук, Serzhan_SL@pers.spmi.ru

Федоров Е. В., аспирант, vgeniy-fedorov-00@bk.ru

Реферат

Рассматриваются особенности отработки калийных месторождений — обязательное сохранение водозащитной толщи, проведение операций по минимизации проседаний земной поверхности. Указанные требования, а также мероприятия по утилизации отходов обогатительной фабрики можно реализовать с помощью обратной закладки. Рассмотрены основные виды и способы осуществления такой закладки. Представлена технология послойной механизированной обратной закладки в два этапа: основной, с помощью сухой транспортировки отходов обогатительной фабрики, и дозакладочный, когда верхняя часть камеры дозакладывается твердеющей смесью, приготовленной непосредственно вблизи нее, что позволяет достигать высоких прочностных характеристик массива. Разработан набор оборудования, который впоследствии можно собрать в единый мобильный комплекс. Описана перспектива использования таких комплексов в условиях подводной добычи твердых полезных ископаемых.

Ключевые слова Обратная закладка, водозащитная толща, калийные месторождения, твердеющая закладка, за- кладочный комплекс
Библиографический список

1. Galperin V. G., Yukhimov Ya. I., Airapetyan L. G. Ore mining using mining systems with backfilling of mined-out spaces abroad. Moscow: TsNIIEITsM, 1989. 50 p.
2. Smychnik A. D., Morev A. B., Vas'ko M. V. Potash deposit development systems: Process flow charts, equipment, efficiency. Gornaya Mekhanika. 2008. No. 4. pp. 16–28.
3. Rylnikova M. V., Esina E. N., Sakharov E. M., Berger R. V. Regularities of geodynamic phenomena in the development of deep-lying complex-structured deposits of potassium-magnesium salts. Gornaya Promyshlennost'. 2023. No. 1. pp. 89–94.
4. Baryakh А. А., Smirnov E. V., Kvitkin S. Yu., Tenison L. O. Russian potash industry: Issues of rational and safe mining. Gornaya Promyshlennost'. 2022. No. 1. pp. 41–50.
5. Baturin E. N., Menshikova E. A., Blinov S. M. Problems of development of the largest potash deposits in the world. Sovremennye Problemy Nauki i Obrazovaniya. 2012. No. 6. URL: https://science-education.ru/ru/article/view?id=7513 (accessed: 12.12.2025).
6. Khairutdinov M. M., Votyakov M. V. Hydraulic backfilling at potash mines. Gornyi Informatsionno-analiticheskiy Byulleten'. 2007. No. 6. pp. 214–218.
7. Bronnikov D. M. Fundamentals of underground mining technology with filling. Moscow: Nedra, 1973. 200 p.
8. Huang Z. Study on the mechanical relationship among the backfilling mining support, roof rock beam, and gangue filling body in comprehensive mechanized filling mining process. Advances in Civil Engineering. 2020. Vol. 4. DOI: 10.1155/2020/8824735
9. Adiguzel D. The investigation of effect of particle size distribution on flow behavior of paste tailings. Journal of Environmental Management. 2019. Vol. 243. pp. 393–401.
10. Li S. The recent progress China has made in the backfill mining method. Part II: The composition and typical examples of backfill systems. Minerals. 2021. Vol. 11, Iss. 12. pp. 1362–1375.
11. Qin J. An analytical solution to estimate the settlement of tailings or backfill slurry by considering the sedimentation and consolidation. International Journal of Mining Science and Technology. 2021. Vol. 31, Iss. 3. pp.463–471.
12. Rylnikova M. V., Berger R. V., Yakovlev I. V., Sakharov E. M. Classification of backfill mining systems for underground mining of salt deposits. Gornaya Promyshlennost'. 2024. No. 5S. pp. 64–70.
13. Radchenko D. N., Berger R. V., Tatarnikov V. I., Zubkov P. O. Experimental study of the nature and consequences of interaction of salt rocks with hydrofilling brines during underground development of potassium salt deposits. Marksheyderiya i Nedropolzovanie. 2023. No. 6. pp. 60–67.
14. Sakharov E. M., Berger R. V., Esina E. N. Conditions for ensuring safety of mining operations during underground development of salt deposits. Macrosurveyor and geological support of mining operations: collection of the international scientific and practical conference. Magnitogorsk, May 24–26, 2022. pp. 58–60.
15. Verkholantseva T. V., Dyagilev R. A. Influence of backfilling on seismic activity in potash mines. Gornyi Informatsionno-analiticheskiy Byulleten'. 2016. No. 12. pp. 115–123.
16. Ksenofontov A. A., Tronin S. A., Bondarenko M. P., Kudryashov A. L. Development of an innovative technology for backfilling of the mined-out space using paste-like backfill mixtures and assessment of its technical, economic and environmental efficiency. Gornaya Promyshlennost'. 2024. No. 5S. pp. 91–97.

17. Rylnikova M. V., Yakovlev I. V., Sakharov E. M., Berger R. V. Justification of the structure and parameters of the logistic scheme of an underground mine in the development of deep-lying deposits of potassium salts by systems with backfilling of the mined-out space. Gornaya Promyshlennost'. 2023. No. 2. pp. 134–139.
18. Berger R. V., Tatarnikov V. I. Use of salt waste in backfilling of mined-out spaces of an underground mine — a means of complete utilization of salt dumps formed on the surface. Combined geotechnology: Integrated development of man-made formations and mineral deposits. Proc. of the scientific and practical conference. Magnitogorsk, May 23–28, 2023. pp. 106–109.
19. Radchenko D. N. Improving the parameters of underground development technology for potash salt deposits based on the formation of consolidated backfill massifs. Problems of subsoil development in the 21st century through the eyes of the young: Proc. of the 16th International scientific school of young scientists and specialists. Moscow, October 23–27, 2023. pp. 3–6.
20. Kovalskii E. R., Gromtsev K. V. Development of the technology of stowing the developed space during mining. Zapiski Gornogo Instituta. 2022. Vol. 254. pp. 202–209.
21. Bulatov K. V., Dik Yu. A., Kotenkov A .V., Tankov M. S., Manin A. A., Egorov M. A., Smyslov G. I. Practice of technology of filling mined-out space of mines with hardening mixtures (developments of JSC Uralmekhanobr). Ekaterinburg: Fort Dialog, 2024. 516 p.
22. Instructions for the protection of mines from flooding and the protection of undermined objects in the conditions of the Verkhnekamskoye potassium salt deposit (technological regulations). St. Petersburg: VNIIG, 2008. 95 p.
23. Borzakovskiy B. A., Papulov L. M. Filling operations at the Verkhnekamsk potash mines. Moscow: Nedra, 1994. 234 p.
24. Shulakov D. Y., Verkholantseva T. V. Relation between microseismic activity and parameters of mining in the Verkhnekamskoye potash deposit. Rockbursts and seismicity in mines. Proc. of the 8th International symposium. Obninsk–Perm, 2013. pp. 505–510.
25. Rylnikova M. B., Berger R. V. Features of the logistic scheme of a deep-lying deposit of potassium salts with backfilling of the mined-out space based on stored salt waste. Gornaya Promyshlennost'. 2025. No. 2. pp. 47–54.
26. Rylnikova M. B., Berger R. V., Zubkov P. O., Tatarnikov V. I. Development of scientific and methodological foundations of technologies for backfilling of the mined-out space taking into account the specifics of mining-geological and hermetic conditions for the development of salt deposits. Ratsionalnoye Osvoyenie Nedr. 2024. No. 1. pp. 36–44.
27. Rylnikova M. B., Berger R. V., Yakovlev I. V., Tatarnikov V. I., Zubkov P. O. Backfill technologies and designs for deep-level sylvinite mining. Fiziko-tekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2024. No. S2. pp. 167–176.
28. Golik V. I., Kongar-Syuryun Ch. B., Tyulyaeva Yu. S., Khairutdinov A. M. Use of binders based on filling mixtures. Izvestiya Tulskogo Gosudarstvennogo Universiteta. Nauki o Zemle. 2020. No. 4. pp. 389–400.
29. Volkov E. P., Anushenkov A. N. Development of technology for filling mined-out spaces with hardening mixtures using enrichment tailings. Krasnoyarsk: SFU, 2020. 176 p.
30. Saraskin A. V., Gogotin A. A. Technology of backfilling with tailings. Gornyi Zhurnal. 2017. No. 9. pp. 41–45.
31. Vasilyeva M. A., Volchikhin A. A., Morozov M. D. Equipment and technologies for carrying out work on backfilling of mined-out spaces. Gornyi Informatsionno-analiticheskiy Byulleten'. 2021. No. 6. pp. 133–144.
32. Andreev S. I., Kazakova V. E., Romanova L. N. Оceanic deep-sea polymetallic sulfides: abundance, composition, origin, perspectives of development. Gornyi Zhurnal. 2012. No. 3. pp. 7–17.
33. Liu Z., Liu K., Chen X., et al. Deep-sea rock mechanics and mining technology: State of the art and perspectives. International Journal of Mining Science and Technology. 2023. Vol. 33, Iss. 9. pp. 1083–1115.
34. Sitlhou L., Chakraborty P. Comparing deep-sea polymetallic nodule mining technologies and evaluating their probable impacts on deep-sea pollution. Marine Pollution Bulletin. 2024. Vol. 206. DOI: 10.1016/j.marpolbul.2024.116762
35. Sudarikov S. M., Yungmeister D. A., Korolev R. I., Petrov V. A. On the possibility of reducing man-made burden on benthic biotic communities when mining solid minerals using technical means of various designs. Zapiski Gornogo Instituta. 2022. Vol. 253. pp. 82–96.

Language of full-text русский
Полный текст статьи Получить
Назад