Журналы →  Обогащение руд →  2025 →  №6 →  Назад

ОБОГАТИТЕЛЬНЫЕ ПРОЦЕССЫ
Название Повышение извлечения меди из медных минералов при сернокислотном выщелачивании
DOI 10.17580/or.2025.06.03
Автор Александрова Т. Н., Люблянова В. А.
Информация об авторе

Санкт-Петербургский горный университет императрицы Екатерины II, Санкт-Петербург, РФ

Александрова Т. Н., зав. кафедрой, д-р техн. наук, член-кор. РАН, профессор, Aleksandrova_TN@pers.spmi.ru

Люблянова В. А., аспирант, lyublyanova.spb.lera@yandex.ru

Реферат

Представлены результаты исследования возможности повышения извлечения меди в процессах химического обогащения медных руд на примере медных минералов — азурита, малахита, халькопирита и хризоколлы. Проведена оценка термодинамической вероятности протекания реакций выщелачивания рассматриваемых минералов, позволившая обосновать возможность применения нагрева для интенсификации процесса. Проанализировано влияние окислителей на извлечение меди. Показано, что применение энергетических воздействий, таких как СВЧ и ультразвуковое, позволяет повысить скорость выщелачивания и сократить время протекания реакции. Исследование влияния СВЧ излучения позволило установить, что наибольший эффект достигается при извлечении меди из халькопирита, что может быть объяснено разрушением образующегося пассивирующего слоя и высокой скоростью нагрева. Наибольший прирост извлечения при ультразвуковом излучении отмечен для хризоколлы и халькопирита, что связанно с механическим разрушением пассивирующих слоев, соответственно, диоксида кремния и серы, образующихся в ходе выщелачивания.

Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации «Исследование термодинамических процессов Земли с позиции генезиса углеводородов на больших глубинах» FSRW – 2024 – 0008.

Ключевые слова Химическое обогащение, сернокислотное выщелачивание, медь, СВЧ воздействие, ультразвуковое излучение, медные минералы, окислители
Библиографический список

1. Litvinenko V. S., Petrov E. I., Vasilevskaya D. V., Yakovenko A. V., Naumov I. A., Ratnikov M. A. Assessment of the role of the state in the management of mineral resources. Zapiski Gornogo Instituta. 2023. Vol. 259. pp. 95–111.
2. Ignatkina V. A. Selective reagent regimes of flotation of non-ferrous and noble metal sulfides from refractory sulfide ores. Tsvetnye Metally. 2016. No. 11. pp. 27–33.
3. Afanasova A. V., Aburova V. A., Prokhorova E. O., Lushina E. A. Investigation of the influence of depressors on flotation-active rock-forming minerals in sulphide goldbearing ore flotation. Gornyi Informatsionno-analiticheskiy Byulleten'. 2022. No. 6–2. pp. 161–174.
4. Bilal M., Park I., Hornn V., Ito M., Hassan F. U., Jeon S., Hiroyoshi N. The challenges and prospects of recovering fine copper sulfides from tailings using different flotation techniques: A review. Minerals. 2022. Vol. 12, No. 5. DOI: 10.3390/min12050586
5. Anufriev A. S., Lebedik E. A., Bazhin V. Yu. New approaches to improving efficiency of automated control over ore pretreatment process stages. Gornyi Informatsionno-analiticheskiy Byulleten'. 2024. No. 2. pp. 76–92.
6. Aleksandrova T. N., Lushina E. A. Influence of an ionic composition of a sludge liquid phase on technological parameters of beneficiation. Tsvetnye Metally. 2024. No. 8. pp. 13–20.
7. Nikolaeva N. V., Kallaev I. T. Features of copper–molybdenum ore grinding. Gornyi Informatsionno-analiticheskiy Byulleten'. 2024. No. 1. pp. 52–66.
8. Kuskov V. B., Iliin E. S. Study of the agglomeration process of various types of raw materials by extrusion method. Gornyi Informatsionno-analiticheskiy Byulleten'. 2022. No. 6–1. pp. 279–289.
9. Afanasova A. V., Aburova V. A. Growth of lowdimensional structure noble metals in carbonaceous materials under microwave treatment. Gornyi Informatsionno-analiticheskiy Byulleten'. 2024. No. 1. pp. 20–35.
10. Zhang X., Cheng H., Xu K., Ding D., Wang X., Wang B., Ma Z. Ultrasonic enhancement for mineral flotation: Technology, device, and engineering applications. Minerals. 2024. Vol. 14. DOI: 10.3390/min14100986
11. Chanturiya V. A., Minenko V. G., Samusev A. L., et al. The effect of energy impacts on the acid leaching of eudialyte concentrate. Mineral Processing and Extractive Metallurgy Review. 2020. Vol. 42, Iss. 2. pp. 1–12.
12. Romashev A. O., Nikolaeva N. V., Gatiatullin B. L. Adaptive approach formation using machine vision technology to determine the parameters of enrichment products deposition. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 677–685.
13. Gospodarikov A. P., Revin I. E., Morozov K. V. Composite model of seismic monitoring data analysis during mining operations on the example of the Kukisvumchorrskoye deposit of JSC «Apatit». Zapiski Gornogo Instituta. 2023. Vol. 262. pp. 571–580.
14. Boduen A. Ya., Petrov G. V., Kobylyansky A. A., Bulaev A. G. Sulfide leaching of high-grade arsenic copper concentrates. Obogashchenie Rud. 2022. No. 1. pp. 14–20.
15. Gordeev D. V., Fomenko I. V., Shneerson Ya. M., Petrov G. V. Processing of carbonaceous gold-containing concentrates by autoclave oxidation with the addition of nitric acid as a secondary oxidizer. Obogashchenie Rud. 2023. No. 5. pp. 18–24.
16. Yanishevskya E., Fokina N., Selivanova E., Kompanchenko A., Makarov D., Goryachev A. Processing of sulfide
copper-nickel ores from the deposits in murmansk region by heap leaching. Minerals. 2021. Vol. 11, No 8. DOI: 10.3390/min11080820
17. Brichkin V. N., Kurtenkov R. V., Maksimova R. I. Bormotov I. S. Regeneration and recycling of lime component in complex processing of kaolin raw materials. Obogashchenie Rud. 2024. No. 4. pp. 32–38.
18. ElDeeb A. B., Sizyakov V. M., Brichkin V. N., Kurtenkov R. V. Effect of sintering temperature on the alumina extraction from kaolin. Advances in raw material industries for sustainable development goals. London: CRC Pres, 2021. pp. 136–145.
19. Chanturiya V. A., Minenko V. G., Samusev A. L., et al. Combined physicochemical and energy methods to improve the recovery of rare earth elements from eudialyte concentrate. Minerals. 2023. Vol. 13, Iss. 3. DOI: 10.3390/min13030414
20. Chanturiya V. A. Scientific substantiation and development of innovative processes for the extraction of zirconium and rare earth elements in the deep and comprehensive treatment of eudialyte concentrate. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 505–516.

21. Álvarez M. L., Fidalgo J. M., Gascó G., Ana M. Hydrometallurgical recovery of Cu and Zn from a complex sulfide mineral by Fe3+/H2SO4 leaching in the presence of carbon-based materials. Metals. 2021. Vol. 11. DOI: 10.3390/met11020286
22. Olubambi P., Potgieter J. H. Investigations on the mechanisms of sulfuric acid leaching of chalcopyrite in the presence of hydrogen peroxide. Physicochemical Problems of Mineral Processing. 2014. Vol. 50, No. 2. pp. 657–666.
23. Hernández P., Dorador A., MartÍnez M., Toro N., Castillo J., Ghorbani Y. Use of seawater/brine and caliche’s salts as clean and environmentally friendly sources of chloride and nitrate ions for chalcopyrite concentrate leaching. Minerals. 2020. Vol. 10, No. 5. DOI: 10.3390/min10050477
24. Aracena Alvaro, Javiera Pino, Oscar Jerez. Mechanism and kinetics of malachite dissolution in an NH4OH system. Metals. 2020. Vol. 10, No. 6. DOI: 10.3390/met10060833
25. Tanda B. C., Eksteen J. J., Oraby E. A. An investigation into the leaching behaviour of copper oxide minerals in aqueous alkaline glycine solutions. Hydrometallurgy. 2017. Vol. 167. pp. 153–162.
26. Shabani M. A., Irannajad M., Azadmehr A. R. Investigation on leaching of malachite by citric acid. International Journal of Minerals Metallurgy and Materials. 2012. Vol. 19. pp. 782–786.
27. Shi Y., Zuo Q., Liu D. Dissolution kinetics of malachite in trichloroacetic acid solution. Journal of the Iranian Chemical Society. 2022. Vol. 19. pp. 2581–2590.
28. Pan Z., Jian C., Peng Z., Fu X., He R., Yue T., Sun W. Study on process mineralogy of the combined copper oxide ore in Tibet and acid leaching behavior with calcium fluoride. Mineals. 2024. Vol. 14, No. 4. DOI: 10.3390/min14040352
29. Leonelli C., Mason T. J. Microwave and ultrasonic processing: Now a realistic option for industry. Chemical Engineering and Processing: Process Intensification. 2010. Vol. 49, Iss. 9. pp. 885–900.
30. Sun G., Jiang M., Wang S., Fu L., Zuo Y., Zhang G., Zhang L. The ultrasound leaching kinetics of copper in the
H2SO4 dissolution process. Canadian Metallurgical Quarterly. 2024. Vol. 62, No. 2. pp. 698–712.
31. Moravvej Z., Mohebbi A., Daneshpajouh S. The microwave irradiation effect on copper leaching from sulfide/oxide ores. Materials and Manufacturing Processes. 2016. Vol. 33, No. 1. pp. 1–6.
32. Beisembayev B. B., Kunaev A. M., Kenzhaliev B. K. Theory and practice of heap copper leaching. Almaty: Gylym, 1998. 348 p.
33. Nor Kamariah, Panagiotis Xanthopoulos, Koen Binnemans, Jeroen Spooren. Solvometallurgical process for the
recovery of copper from chrysocolla in monoethanolamine. Industrial & Engineering Chemistry Research. 2023. Vol. 62, Iss. 33. pp. 12880–12890.
34. Antonijević M., Janković Z., Dimitrijević M. Kinetics of chalcopyrite dissolution by hydrogen peroxide in sulphuric acid. Hydrometallurgy. 2004. Vol. 71, No. 3–4. pp. 329–334.
35. Wang J., Faraji F., Ghahreman A. Effect of ultrasound on the oxidative copper leaching from chalcopyrite in acidic ferric sulfate media. Minerals. 2020. Vol. 10, No. 7. DOI: 10.3390/min10070633
36. Aleksandrova T., Nikolaeva N., Afanasova A., Romashev A., Aburova V., Prokhorova E. Extraction of low-dimensional structures of noble and rare metals from carbonaceous ores using low-temperature and energy impacts at succeeding stages of raw material transformation. Minerals. 2023. Vol. 13, No. 1. DOI: 10.3390/min13010084
37. Wen T., Zhao Yu., Ma Q., Xiao Q., Zhang T., Chen J., Song Sh. Microwave improving copper extraction from chalcopyrite through modifying the surface structure. Journal of Materials Research and Technology. 2020. Vol. 9, No. 1. pp. 263–270.

Language of full-text русский
Полный текст статьи Получить
Назад