Журналы →  CIS Iron and Steel Review →  2025 →  №2 →  Назад

Rolling
Название Influence of helical rolling and piercing on structure and mechanical properties of billets made of wheel steel of grade T
DOI 10.17580/cisisr.2025.02.04
Автор V. P. Romanenko, A. V. Fomin, B. A. Romantsev, G. A. Filippov, S. M. Kriskovich, A. N. Nikulin
Информация об авторе

National University of Science and Technology “MISIS ” (Moscow, Russia)

V. P. Romanenko, Cand. Eng., Prof., Dept. of Metal Forming
B. A. Romantsev, Dr. Eng., Prof., Dept. of Metal Forming

S. M. Kriskovich, Cand. Eng., Associate Prof., Dept. of Metal Forming, e-mail: moose2@ya.ru


Moscow Polytechnic University (Moscow, Russia)

A. V. Fomin, Cand. Eng., Associate Prof., Dept. of Material Science, e-mail: fominmisis84@mail.ru

 

I. P. Bardin Central Research Institute of Ferrous Metallurgy (Moscow, Russia)
G. A. Filippov, Dr. Eng., Prof., Director of the Institute of Quality Steels, e-mail: iqs12@yandex.ru
A. N. Nikulin, Dr. Eng., Chief Researcher, Institute of Quality Steels, e-mail: iqs12@yandex.ru

Реферат

Improvement of the technology for manufacture of billets of railroad wheels and hollow car axles, using intensive plastic deformation for effective rise of quality and functional properties of finished products, is the aim of this research. The paper presents the results of influence of deformation, which is realized via joint effect of rolling, reeling and consequent piercing, on mechanical properties of billets made of wheel steel of grade T. The rolling process in a three-roll mill is conducted via two passes with diameter reduction 20 % and elongation coefficient 1.56, while reeling in a two-roll mill is implemented with diameter reduction 12.5 % and elongation coefficient 1.31. Such deformation procedure creates the conditions allowing to increase strength and plastic properties of wheel steel and to form the structure in the central area of a deformed billet for consequent piercing. After piercing of preliminarily deformed billet, the properties of wheel steel stabilize significantly. When comparing the mechanical properties of wheel steel in the initial state and after deformation, the strength properties (σu, σ0,2) increase by 1.6 times and plastic properties (δ, ψ) increase by 1.3 and 1.1 times respectively.

This research was financially supported by the Moscow Polytechnic University within the framework of the grant program named after Pyotr Kapitsa.

Ключевые слова Helical rolling, helical piercing, wheel steel, railroad wheels, radial-shear rolling, mechanical properties, impact strength, ingot microstructure
Библиографический список

1. Potapov I. N., Polukhin P. I. Technology of helical rolling. М.: Metallurgiya, 1990. 344 p.
2. Galkin S. P. Trajectory of deformed metal as basis for controlling the radial-shift and screw rolling. Stal. 2004. No. 7. рр. 63–66.
3. Nikulin A. N. Helical rolling. Stresses and strains. М.: Metallurgizdat, 2015. 380 p.
4. Galkin S. P., Kharitonov E. A., Romanenko V. P. Radial-shear rolling as a new high-efficient method for metal forming. Progressive metal forming technologies. A manual. Moscow: IRIAS. 2009. pp. 293–302.
5. Fomin A. V., Romanenko V. P., Aleshchenko A. S., Galkin S. P., Ovchinnikov V. V. Study of macrostructure and mechanical properties changes during the upsetting of hollow billets produced by rotary piercing method. Non-Ferrous Metals. 2025. No. 1. pp. 85–91.
6. Fomin A. V., Galkin S. P., Aleshchenko A. S., Gamin Yu. V., Romanenko V. P. Investigation of metal flow during helical rolling at different feed angles. Non-Ferrous Metals. 2025. No. 1. pp. 92–98.
7. Galkin S. P., Kharitonov E. A., Romanenko V. P. Screw rolling for pipe-blank production. Steel in Translation. 2009. Vol. 39. No. 8. pp. 700–703.
8. Tselikov A. I., Barbarich M. V., Vasilchikov M. V., Granovskiy S. P., Zhukevich-Stosha E. A. Special rolling mills. М.: Metallurgiya. 1971. 336 p.
9. Murillo-Marrodán A., Gamin Yu., Kaputkina L., García E., Aleshchenko A., Derazkola H. A., Pashkov A., Belokon E. Microstructural and mechanical analysis of seamless pipes made of superaustenitic stainless steel using cross-roll piercing and elongation. Journal of Manufacturing and Materials Processing. 2023. Vol. 7. No. 5. p. 185.
10. Galkin S. P., Kin T. Yu., Gamin Yu. V., Aleshchenko A. S., Karpov B. V. Review of scientific-applied research and industrial application of radial shear rolling technology. CIS Iron and Steel Review. 2024. Vol. 27. pp. 35–47.
11. Galkin S. P., Aleshchenko A. S., Romantsev B. A., Gamin Yu. V., Iskhakov R. V. Influence of preliminary deformation of continuously cast billets via radial-shear rolling on structure and properties of hot-rolled pipes made of chromium-containing steel. Metallurg. 2021. No. 2. pp. 54–61.
12. Smarygina I. V., Aleshchenko A. S., Antoshchenkov A. E., Kaputkina L. M. Structure and properties of hot-rolled seamless pipes made of carbon and low-alloy steels after heat treatment. Chernye metally. 2024. No. 4. pp. 55–62.
13. Galkin S. P., Gamin Yu. V., Kin T. Yu., Kostin S. A. Experimental testing of radial-shear rolling to obtain a deformed alloy of the Co–Cr–Mo system. Chernye metally. 2023. No. 9. pp. 47–53
14. Gamin Yu. V., Kin T. Yu., Galkin S. P., Makhmud Alhadzh Ali A., Karashaev M. M., Padalko A. G. Analysis of microstructure analysis for the alloy Co–28Cr–6Mo during hot deformation. Metally. 2023. No. 6. pp. 59–64.
15. Shurkin P. K., Akopyan T. K., Galkin S. P., Aleshchenko A. S. Effect of Radial Shear Rolling on the Structure and Mechanical Properties of a New-Generation High-Strength Aluminum Alloy Based on the Al–Zn–Mg–Ni–Fe System. Metal Science and Heat Treatment. 2019. Vol. 60. pp. 764–769. DOI: 10.1007/s11041-019-00353-x
16. Akopyan T. K., Belov N. A., Aleshchenko A. S., Galkin S. P., Gamin Y. V., Gorshenkov M. V., Cheverikin V. V., Shurkin P. K. Formation of the gradient microstructure of a new Al alloy based on the Al–Zn–Mg–Fe–Ni system processed by radial-shear rolling. Materials Science and Engineering: A. 2019. Vol. 746. pp. 134–144. DOI: 10.1016/j.msea.2019.01.029
17. Akopyan T. K., Gamin Y. V., Galkin S. P., Prosviryakov A. S., Aleshchenko A. S., Noshin M. A., Koshmin A. N., Fomin A. V. Radial-shear rolling of high-strength aluminum alloys: Finite element simulation and analysis of microstructure and mechanical properties. Materials Science and Engineering: A. 2020. Vol. 768: 139424. DOI: 10.1016/j.msea.2020.139424
18. Lakiza V. A., Gamin Yu. V., Aleshchenko A. S., Korol A. V., Yakovlev A. L. Modeling and experimental testing of rolling technology for pipes of titanium alloys VT1-0 and PT-7M at the tube rolling mill 70–270. Prokatnoe proizvodstvo. Supplement to the journal “Tekhnologiya metallov”. 2025. No. 20. pp. 1–9.
19. Segal V. M., Shchukin V. Ya. Device for metal strengthening via pressure. USSR Invetnor’s certificate No. 492780. Published 23.02.76. Bulletin No. 43.
20. Beigelzimmer Ya. E., Varyulhin V. N., Orlov D. V., Synkov S. G. Helical extrusion – the processes of deformation accumulation. Donetsk : TEAN. 2003. 87 p.
21. Salishchev G. A., Zherebtsov S. V. Development of submicrocrystalline titanium alloys using «ABC» isothermal forging. Material science forum. 2004. Vols. 447–448. pp. 459–464.
22. Langdon T. G. Twenty-five years of ultrafine-grained materials: achieving exceptional properties through grain refinement. Acta Materialia. 2013. Vol. 61 (19). pp. 7035–7059.
23. Terada D., Inoue S., Tsuji N. Microstructure and mechanical properties of commercial purity titanium severely deformed by ARB process. Journal of Materials Science. 2007, Vol. 42. pp. 1673–1681.
24. Romanenko V. P., Romantsev B. A., Illarionov G. P. et all. Billet Preparation Method for Railcar Hollow Axle Production. Metallurgist. 2014. Vol. 58 (7–8). pp. 684–688.
25. Romanenko V. P., Stepanov P. P., Kriskovich S. M. Production of Hollow Railroad Axles by Screw Piercing and Radial Forging. Metallurgist. 2018. Vol. 61 (9–10). pp. 873–877.
26. Aleshchenko A. S., Iskhakov R. V., Galkin S. P., Gamin Yu. V., Kadach M. V. Technology and stand for radial-shear rolling of special design for preliminary reduction of continuously cast billets in conditions of Tube Rolling Mill 160 of JSC Pervouralsk New Pipe Plant at increased roll feed angles. Chernye metally. 2024. No. 11. pp. 45–52.
27. Gamin Yu. V., Galkin S. P., Nguyen X. D., Akopyan T. K. Analysis of temperature-deformation conditions for rolling aluminum alloy Al–Mg–Sc based on FEM modeling. Izvestiya. Non-Ferrous Metallurgy. 2022. Vol. 3. pp. 57–67. DOI: 10.17073/0021-3438-2022-3-57-67
28. Galkin S. P., Stebunov S. A., Aleschenko A. S., Vlasov A. V., Patrin P. V., Fomin A. V. Simulation and Experimental Evaluation of Circumferential Fracture Conditions in Hot Radial-Shear Rolling. Metallurgist. 2020. Vol. 64. pp. 233–241. DOI: 10.1007/s11015-020-00988-9
29. Pater Z., Tomczak J., Bulzak T., Wójcik Ł., Skripalenko M. M. Prediction of ductile fracture in skew rolling processes. Int. J. Mach. Tools Manuf. 2021. Vol. 163. 103706. DOI: 10.1016/j.ijmachtools.2021.103706
30. Murillo-Marrodán A., Garcia E., Barco J., Cortés F. Analysis of wall thickness eccentricity in the rotary tube piercing process using a strain correlated FE model. Metals. 2020. No. 10. 1045. DOI: 10.3390/met10081045
31. Pater Z., Tomczak J., Bulzak T. Numerical analysis of the skew rolling process for rail axles. Archives of Metallurgy and Materials. 2015. Vol. 60. pp. 415–418. DOI: 10.1515/amm-2015-0068
32. Skripalenko M. M., Chan B. Kh., Romantsev B. A., Galkin S. P., Samusev S. V. Investigation of the features of billet stress-strain state at different screw rolling schemes using computer simulation. Stal. 2019. No. 2. pp. 35–39.

Полный текст статьи Influence of helical rolling and piercing on structure and mechanical properties of billets made of wheel steel of grade T
Назад