Журналы →  CIS Iron and Steel Review →  2025 →  №2 →  Назад

Ironmaking
Название Investigation of the behavior of gallium and indium in a metallurgical system characteristic of blast furnace hearth conditions
DOI 10.17580/cisisr.2025.02.03
Автор L. I. Lopachevskaya, P. I. Chernousov, O. V. Golubev, M. V. Slonov
Информация об авторе

National University of Science and Technology “MISIS” (Moscow, Russia)

L. I. Lopachevskaya, Graduate Student, e-mail: lilya2599@gmail.com
P. I. Chernousov, Cand. Eng., Associate Prof., e-mail: p.chernou@yandex.ru
O. V. Golubev, Cand. Eng., Associate Prof., e-mail: olega-san@yandex.ru
M. V. Slonov, Graduate Student, e-mail: magaslonov@mail.ru

Реферат

In recent decades, there has been a growing interest in studying the behavior of trace impurity elements at all stages of ferrous metal production. This is driven by the processing of low-grade ores with complex chemical compositions and the use of secondary materials “enriched” with trace elements. Analysis of metallurgical raw materials and products reveals the presence of up to 40 elements from the periodic table in quantities exceeding 5 ppm. The rapid development of the electronics industry has driven growing interest in secondary resources of gallium and indium, which are critically important for semiconductor manufacturing. A metallurgical system was investigated, comprising pig iron, blast furnace slag, and lead as its main components under conditions characteristic of a blast furnace hearth. Gallium and indium were introduced into the system via various methods encapsulated in aluminum foil. In all experiments, an almost complete separation of gallium and indium between the pig iron and lead phases was achieved. Up to 99 % of the gallium introduced into the system partitioned into the pig iron, while 90–95 % of the introduced indium partitioned into the lead. The presence of small quantities of gallium and indium in the graphite phase suggests the potential for the formation of these metals’ carbides under blast furnace conditions. A significant transfer of manganese sulfides into the lead-based phase was also observed in the investigated metallurgical system.

Ключевые слова Blast furnace, cast iron, trace elements, element flow, lead, carbides, sulphides, gallium, indium
Библиографический список

1. Buchwalder J., Grosspietsch K.-H., Haertig W., Janz J., Luengen H. B., Schmoele P. Metallurgie-Anforderungen an Reststoffe fur das Einblasen in den Hochofen. Stahl und Eisen. 2003. Vol. 123. pp. 29–38.
2. Loleit S. I. Development of environmentally friendly technologies for complex extraction of noble and non-ferrous metals from electronic waste. Dissertation … Candidate of Technical Sciences : 05.16.01. 2009. 232 p.
3. Makhotkina E. S. Utilization of secondary aluminum production waste for obtaining aluminous slags by blast furnace smelting of bauxites. Dissertation … Candidate of Technical Sciences : 05.16.01. 2011. 133 p.
4. Asanuma M., Terada K., Inoguchi T., Takashima N. Development of waste plastics pulverization for blast furnace injection. JFE Technical Report. 2014. Vol. 19. pp. 110–116.
5. Murai R., Asanuma M., Sato M., Inoguchi T., Terada K. Flow behavior of plastic particles in the lower part of blast furnace. ISIJ International. 2015. Vol. 55. pp. 528–533.
6. Trinkel V., Kieberger N., Burgler T., Rechberger H., Fellner J. Influence of waste plastic utilization in blast furnace on heavy metal emissions. Journal of Cleaner Production. 2015. Vol. 94. pp. 312–320.
7. Scheiding K., Scherer S. V. D., Pfeiffer H. K. [et al.] Trends in the development of conversion pig iron production in small-scale units. Chernye Metally. 2000. No. 10. pp. 28–39.
8. Geerdes M., Toxopeus H., van der Vliet C. Modern Blast Furnace Ironmaking. 2nd ed. Netherlands : IOS Press BV, 2009. 164 p.
9. Chernousov P. I., Strazhkova E. A., Golubev O. V. Analysis of modern trends and prospects for pig iron production in small blast furnaces. Chernye Metally. 2025. No. 6. pp. 10–15.
10. Vegman E. F., Zherebin B. N., Pokhvisnev A. N. [et al.]. Pig iron metallurgy: Textbook for universities. Edited by Yusfin Yu. S. Moscow : Akademkniga, 2004. 774 p.
11. Chernousov P. I., Golubev O. V., Lopachevskaya L. I. Study of the microimpurity elements behavior in blast furnace smelting. Chernye metally. 2024. No. 7. pp. 45–51.
12. Yusfin Yu. S., Karpov Yu. A., Chernousov P. I. Assessment of “flows” of trace elements in the production cycle of the enterprise. Metallurg. 1996. Vol. 39. No. 10. p. 197.
13. Hendriks C., Obernosterer R., Mueller D., Kytzia S., Baccini P., Brunner P. H. Material Flow Analysis: A tool to support environmental policy decision making. Case-studies on the city of Vienna and the Swiss lowlands. Local Environment. 2000. Vol. 5. No. 3. pp. 311–328.
14. Besta P., Samolejova A., Janovska K., Lenort R., Haverland J. The effect of harmful elements in production of iron in relation to input and output material balance. Metalurgija. 2012. Vol. 51. No. 3. pp. 325–328.
15. Trinkel V., Thaler C., Rechberger H., Fellner J. Challenges for the application of material flow analysis at the level of production processes – case study: Blast furnace process. Matériaux & Techniques. 2016. Vol. 104. No. 1. Art. No. 107. 9 p.
16. Gudenau G.-V. Iron Metallurgy. Freiberg : Freiberg Mining Academy, 1999. 200 p.
17. Trinkel V. Challenges and Potentials for Material Flow Analyses at Plant Level : Diss. … Dr. Tech. Sci. Wien, 2016. — 115 p.
18. Chernousov P. I., Golubev O. V., Petelin A. L. Study of gallium behavior in blast furnace smelting. Metallurgist. 2010. Vol. 54. No. 1–2. pp. 5–6.
19. Phase Diagrams of Binary Metallic Systems: handbook in 3 volumes. Vol. 1. Edited by N. P. Lyakishev. Moscow : Mashinostroenie, 1996. 991 p.

Полный текст статьи Investigation of the behavior of gallium and indium in a metallurgical system characteristic of blast furnace hearth conditions
Назад