Журналы →  Non-ferrous Мetals →  2025 →  №2 →  Назад

COMPOSITES AND MULTIPURPOSE COATINGS
Название Modern methods of applying ceramic coatings to titanium alloys: prospects and technological solutions
DOI 10.17580/nfm.2025.02.04
Автор Shubert A. V., Konovalov S. V., Gudala S., Panchenko I. A.
Информация об авторе

Siberian State Industrial University, Novokuznetsk, Russia

A. V. Shubert, Junior Researcher, Research Management Department, e-mail: shubert_av@sibsiu.ru

S. Gudala, PhD, Senior Researcher, Research Management Department, e-mail: gsuresham@sibsiu.ru
I. A. Panchenko, Candidate of Technical Sciences, Head of the Laboratory of Electron Microscopy and Image Processing, e-mail: i.r.i.ss@yandex.ru


Siberian State Industrial University, Novokuznetsk, Russia1 ; Harbin Engineering University, Harbin, China2

S. V. Konovalov, Professor, Doctor of Technical Sciences, Vice-Rector for Research and Innovation1, Chief Researcher of Yantai Research Institute2, e-mail: konovalov@sibsiu.ru

Реферат

This study focuses on the analysis of modern technologies for applying ceramic coatings to titanium alloys to enhance their performance characteristics, particularly for aerospace applications. The article examines key methods and technologies, such as plasma spraying, micro-arc oxidation, electron beam processing, as well as combined and multilayer coatings. Special attention is given to the parameters of plasma spraying that influence the quality and durability of coatings. The research methodology includes theoretical analysis, experimental studies, and comparative evaluation of various coating application technologies, along with the systematization of optimal parameters that improve the operational properties of titanium alloys. The prospects of applying these technologies in extreme loads and aggressive environments are also considered. The results show that plasma spraying, micro-arc oxidation, and combined treatment methods significantly improve the corrosion resistance, wear resistance, and thermal stability of titanium alloys. The greatest effect is achieved by optimizing the spraying parameters, such as plasma temperature, powder feed rate, and substrate distance, which enable the formation of coatings with minimal porosity and high adhesion. In conclusion, the study highlights the importance of modern coating technologies in enhancing the performance characteristics of titanium alloys in critical industries such as aerospace, medical, and energy sectors. Further research should focus on overcoming technological limitations, reducing costs, and adapting methods to industry-specific requirements.

The research was conducted with funding from a grant from the Russian Scientific Foundation № 24-79-10178, https://rscf.ru/project/24-79-10178/.

Ключевые слова Titanium alloys, ceramic coatings, combined coatings, plasma spraying, micro-arc oxidation, electron beam treatment, spraying parameters, extreme loads, aerospace industry
Библиографический список

1. Ezhov A. O. Periodization of Becoming and Development of Titanic Industry of Russian: Historigraphy of the Problem. Tomsk State University Journal. 2015. Vol. 20, Iss. 11. pp. 86–92.
2. Arkhipova Yu. A. Current State of the Global and Russian Titanium-Containing Raw Materials Market. Mining Informational and Analytical Bulletin. 2007. Iss. S16. pp. 66–74.
3. Petrova L. G., Lysak V. V., Mal’kova E. V. Titanium Market`s Assessment of the State in the Current Geopolitical Situation. Automotive and Road Expert Evaluation. 2022. Iss. 4. pp. 18–30.
4. Bondarenko Yu. A. Trends int Development of High-Temperature Metal Materials and Technologies in the Production of Modern Aircraft Gas Turbine Engines. Aviation Materials and Technologies. 2019. Iss. 2. pp. 3–11.
5. Kolobov G. A. Recycling of Titanium Waste and Titanium Alloys. Innovative Materials and Technologies in Metallurgy and Mechanical Engineering. 2013. Iss. 1. pp. 138–139.
6. Khorev A. I. Theoretical and Practical Foundations of the Creation of Modern Structural Titanium Alloys and Technologies for Aerospace and Rocket Technology. Aviation Materials and Technologies. 2007. №1. pp. 24–41.
7. Aleksandrov A. V., Lednov S. V., Davydkina E. A. State of the Affairs in the Titanium Industry and Development Prospects. Technology of Light Alloys. 2021. Iss. 2. pp. 76–81.
8. Khorev A. I. Fundamental and Applied Projects on Titanium Alloys and Perspective Areas of Their Development. Trudy VIAM. 2013. Iss. 2. 4.
9. Bugaev G. A., Antoniadi Yu. V., Pomogaeva E. V., Shorikova A. I. Modern Presentation of Using Porous Titanium
Implants and Its Alloys for Bone Defects Augmentation. Polytrauma. 2023. Iss. 2. pp. 94–102.
10. Manojlović V. D., Marković G. Titanium Alloys Data base for Medical Applications. Metallurgical and Materials Data. 2023. Iss. 1. pp. 1–6.
11. Sarraf M., Ghomi E. R., Alipour S., Ramakrishna S., Sukiman N. L. A State-of-the-Art Review of the Fabrication and Characteristics of Titanium and Its Alloys for Biomedical Applications. Bio-Design Manufacturing. 2021. Vol. 5. pp. 371–395.
12. Wang L., Zhao X., Wang X., Shang S., Xiu Z., Xi Y., Jia H., Xu S., Liu H., Wen L., Xiao X., Liu R., Ji J. Current Status Review of Corrosion Resistance Applications of Titanium Alloys in the Petroleum Industry. Coatings. 2024. Vol. 14, Iss. 8. 941.
13. Takahashi K., Mori K., Takebe H. Application of Titanium and its Alloys for Automobile Parts. MATEC Web Conferences. 2020. Vol. 321. 02003.
14. Veiga C., Davim J. P., Loureiro A. J. R. Properties and Applications of Titanium Alloys: a Brief Review. Reviews
on Advanced Materials Science. 2012. Vol. 32, Iss. 2. pp. 133–148.
15. Banerjee D., Williams J. C. Perspectives on Titanium Science and Technology. Acta Materialia. 2013. Vol. 61, Iss. 3. pp. 844–879.
16. Haile F., Adkins J., Corradi M. A Review of the Use of Titanium for Reinforcement of Masonry Structures. Materials. 2022. Vol. 15, Iss. 13. 4561.
17. Adamus J. Applications of Titanium Sheets in Modern Building Construction. Advanced Materials Research. 2014. Vol. 1020. pp. 9–14.
18. Williams J. C., Boyer R. R. Opportunities and Issues in the Application of Titanium Alloys for Aerospace Components. Metals. 2020. Vol. 10. 705.
19. Boyer R. R. An Overview on the Use of Titanium in the Aerospace Industry. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing. 1996. Vol. 213, Iss. 1-2. pp. 103–114.
20. Jha A. K., Singh S. K., Kiranmayee M. S., Sreekumar K., Sinha P. P. Failure Analysis of Titanium Alloy (Ti6Al4V) Fastener Used in Aerospace Application. Engineering Failure Analysis. 2010. Vol. 17, Iss. 6. pp. 1457–1465.
21. Kumar P. S. S. R., Mashinini P. M. Titanium Alloys for Aerospace Structures and Engines. In: Aerospace Materials. Novel Technologies and Practical Applications. Elsevier, 2025. pp. 227–253.
22. Zhao Q., Zhao S., Xin S., Chen Y., Wu C., Wang H., Xu J., Wan M., Zeng W., Zhao Y. High-Strength Titanium Alloys for Aerospace Engineering Applications: a Review on Melting-Forging Process. Materials Science and Engineering: A. Vol. 845. 2022. 143260.
23. Besisa H.A., Yajima T. Titanium-Based Alloys: Classification and Diverse Applications. In: Titanium-Based Alloys – Characteristics and Applications. Eds. by. Vizureanu P., Baltatu M. S. IntechOpen, 2024. pp. 125–145.
24. Sharanov А. О., Kirichenko Е. О., Savostin D. А. Non-Polymer-Matrix Composite Materials for Space Applications. Izvestiya Tula State University. 2023, Iss. 2. pp. 314–320.
25. Mashtalyar D. V., Nadaraia K. V., Gnedenkov A. S., Imshinetskiy I. M., Piatkova M. A., Pleshkova A. I., Belov E. A., Filonina V. S., Suchkov S. N., Sinebryukhov S. L., Gnedenkov S. V. Bioactive Coatings Formed on Titanium by Plasma Electrolytic Oxidation: Composition and Properties. Materials. 2020. Vol. 13. 4121.
26. Luo R., Jiao Y., Zhang S., Wu J., Wu X., Lu K., Zhang P., Li Y., Ni X., Zhao Q. Fabrication, properties and biological activity of a titanium surface modified with zinc via plasma electrolytic oxidation. Frontiers in Materials. 2023. Vol. 10. 1202110.
27. Becerikli M., Kopp A., Kroger N., Bodrova M., Wallner C., Wagner J. M., Dadras M., Jettkant B., Pohl F., Lehnhardt M., Jung O., Behr B. A Novel Titanium Implant Surface Modification by Plasma Electrolytic Oxidation (PEO) Preventing Tendon Adhesion. Materials Science and Engineering: C. 2021. Vol. 123. 112030.
28. Kyrylenko S., Sowa M., Kazek-Kęsik A., Stolarczyk A., Pisarek M., Husak Y., Korniienko V., Deineka V., Moskalenko R., Matuła I., Michalska J., Jakóbik-Kolon A., Mishchenko O., Pogorielov M., Simka W. Nitrilotriacetic Acid Improves Plasma Electrolytic Oxidation of Titanium for Biomedical Applications. ACS Applied Materials & Interfaces. 2023. Vol. 15, Iss. 16. pp. 19863–19876.

29. Malinovschi V., Marin A. H., Ducu C., Mog S., Andrei V., Coaca E., Craciun V., Lungu M., Lungu C. P. Improvement of Mechanical and Corrosion Properties of Commercially Pure Titanium Using Alumina PEO Coatings. Coatings. 2022. Vol. 12, Iss. 1. 29.
30. Abbasi S., Mahboob A., Bakhtiari Zamani H., Bilesan M. R., Repo E., Hakimi A. The Tribological Behavior of Nanocrystalline TiO2 Coating Produced by Plasma Electrolytic Oxidation. Journal of Nanomaterials. 2022. Iss. 1. 5675038.
31. Manakova O. S., Kudryashov A. E., Levashov E. A. On the Application of Dispersion-Hardening SHS Electrode Materials Based on (Ti,Zr)C Carbide in the Technology of Electric Spark Alloying. Elektronnaya Obrabotka Materialov. 2015. Vol. 51, Iss. 5. pp. 1–10.
32. Antipov M. S., Bazhin P. M., Konstantinov A. S., Chizhikov A. P., Zhidovich A. O., Stolin A. M. Structure, Mechanical and Tribological Properties of Ti – Cr – C – Ni – Fe Composite Coatings. Physical Mesomechanics. 2023. Vol. 26, Iss. 4. pp. 117–128.
33. Chen X., Zhang P., Wei D., Ding F., Li F., Wei X., Ma S. Preparation and Characterization of Cr/CrC Multilayer on γ-TiAl Alloy by the Double Glow Plasma Surface Alloying Technology. Materials Letters. 2018. Vol. 215. pp. 292–295.
34. Smirnov I. V., Smirnova P. V., Teterina A. Y., Kalita V. I., Komlev V. S. Formation of bioactive ceramic coatings on titanium implants. Cenes & Cells. 2022, Vol. 17, Iss. 3. p. 215.
35. Haghighat P. J., Majidian H., Mobasherpour I., Banijamali S. A Simple Approach to Design Fluorapatite Glassceramic Coatings on the Surface Modified Ti6Al4V Substrates for Biomedical Applications. Journal of the Australian Ceramic Society. 2021. Vol. 57. pp. 673–685.
36. Khopin P. N. The Efficiency Of Tribocoupling with МоS2-Based Solid Lubricant Coatings Using Magnetron and Suspension Sputtering. Proceedings of Higher Educational Institutions. Маchine Building. 2019, Iss. 9. pp. 96–104.
37. Savchenko N. L., Sablina T. Yu., Kulkov S. N. Wear Behavior of Zirconia-Based Ceramics Under High-Speed Friction. Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2011, № 4-3. 857–862.
38. Sibileva S. V., Kozlova L. S. Overview of Technologies for Obtaining Coatings on Titanium Alloys by Plasma Electrolytic Oxidation. Aviation Materials and Technologies. 2016. Iss. S2. pp. 3–10.
39. Ma A., Liu D., Zhang X., Liu Y., Zhao W., Wang R., He G. Improving Fatigue Performance of TiZrN/TiZr-Coated
Ti – 6Al – 4V Alloy by Inducing a Stable Compressive Residual Stress Field. Journal of Alloys and Compoudns. 2022. Vol. 925. 166799.
40. Yu F., Zhang Y., Kong C., Yu H. High Strength and Toughness of Ti – 6 Al – 4 V Sheets via Cryorolling and Short-Period Annealing. Materials Science and Engineering: A. 2022. Vol. 854. 143766.
41. Alyakretsky R. V., Ravodina D. V., Trushkina T. V., Miheev A. E., Girn A. V. Study of Corrosion Resistance of Coatings on Titanium Alloys, Obtained by Microarc Oxidation. Reshetnev Readings. 2014. pp. 7–8.
42. Peng M.-J., Duan Y.-H., Ma L.-S., Shu B.-P. Characteristics of Surface Layers on Ti6Al4V Alloy Borided with CeO2 Near the Transition Temperature. Journal of Alloys and Compounds. 2018. Vol. 769. pp. 1–9.
43. Makuch N. Influence of Nickel Silicides Presence on Hardness, Elastic Modulus and Fracture Toughness of Gas-Borided Layer Produced on Nisil-Alloy. Transactions of Nonferrous Metals Society of China. 2021. Vol. 31, Iss. 3. pp. 764–778.
44. Ma L. S., Duan Y. H., Li P. Microstructure, Growth Kinetics and Some Mechanical Properties of Boride Layers Produced on Pure Titanium by Molten-Salt Boriding. Journal of Materials Engineering and Performance. 2017. Vol. 26. pp. 4544–4555.
45. Makuch N., Dziarski P., Kulka M., Piasecki A., Tulinski M., Majchrowski R. Influence of Niobium and Molybdenum Addition on Microstructure and Wear Behavior of Laser-Borided Layers Produced on Nimonic 80A-Alloy. Transactions of Nonferrous Metals Society of China. 2019, Vol. 29, Iss. 2. pp. 322–337.
46. Atar E., Kayali E. S., Cimenoglu H. Characteristics and Wear Performance of Borided Ti6Al4V Alloy. Surface and Coatings Technology. 2008. Vol. 202, Iss. 19. pp. 4583–4590.
47. Jin J., Duan H.J., Li X.H. The Influence of Plasma Nitriding on Microstructure and Properties of CrN and CrNiN Coatings on Ti6Al4V by Magnetron Sputtering. Vacuum. 2016. Vol. 136. pp. 112–120.
48. Yuan S., Lin N. M., Zou J. J., Lin X. Z., Liu Z. Q., Yu Y., Wang Z. X., Zeng Q. F., Chen W. G., Tian L. H., et al. In-Situ Fabrication of Gradient Titanium Oxide Ceramic Coating on Laser Surface Textured Ti6Al4V Alloy with Improved Mechanical Property and Wear Performance. Vacuum. 2020. Vol. 176. 109327.
49. Dorofeeva E. S., Litvinenko D. S., Yankowskay N. F., Amelchenko N. A. Some Features of Mechanical Processing Titanium Alloys. Reshetnev Readings. 2017. pp. 494–496.
50. Skuratov D. L., Balyakin A. V., Zhuchenko E. I., Shvetsov A. N. Chemical Polishing of Products From Titanium Alloy ВТ6, Manufactured by Method of Selective Laser Alloying. Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2018. Iss. 4-1. pp. 61–68.
51. Kobzareva T. Yu., Gromov V. E., Ivanov Yu. F., Konovalov S. V., Budovskikh E. A., Bataev V. A. Surface Hardening Alloy VT6 of Electroexplosion Alloying with Boron Carbide and by Electron Beam Treatment. Metal Working and Material Science. 2015. Iss. 4. pp. 102–112.
52. Ageev E. V., Altukhov A. Yu., Pereverzev A. S., Khardikov S. V. Influence Of Thermomechanical Treatment on Structure and Properties of VT20 Titanium Alloy Workpieces. Non-Ferrous Metals. 2024. No. 2. pp. 58–62.
53. Shakhov V. A., Uchkin P. G., Aristanov M. G.,
Kolyada V. S., Smelik V. A. Technique for Laboratory Studies of the Plasma Surfacing Process. Izvestia Orenburg State Agrarian University. 2020. Iss. 6. pp. 144–149.
54. Panichev E. V. Determination of the Optimal Criterion for Assessing the Quality of Abrasive-Jet Surface Preparation for Plasma Deposition. Proceedings of the LI Readings Dedicated to the Development of the Scientific Heritage and the Evolution of K.E. Tsiolkovsky’s Ideas: Section “Problems of Rocket and Space Technology”, Kazan, September 20–22, 2016. Kazan: Izdatelstvo Kazanskogo Universiteta, 2017. pp. 185–190.

55. Trifonov G. I., Zhachkin S. Yu. The Thickness of the Coating Parts in Plasma Spraing. Sovremennye Materialy, Tekhnika i Tekhnologii. 2018. Iss. 1. pp. 77–82.
56. Boronenko M. P., Gulyaev I. P., Dolmatov A. V. Determination of Major Thermo Physical Parameters of the Plasma Spraying Process. Yugra State University Bulletin. 2013. Iss. 2. pp. 7–16.
57. Qi K., Yang Y. Microstructure, Wear, and Corrosion Resistance of Nb-Modified Magnetic Field-Assisted Co-Based Laser Cladding Layers. Surface and Coatings Technology. 2022. Vol. 434. 128195.
58. Kornienko E. E., Gulyaev I. P., Kuzmin V. I., Tambovtsev A. S., Tyryshkin P. A. Structure and Properties of WC–10CO4CR Coatings Obtained with High Velocity Atmospheric Plasma Spraying. Metal Working and Material Science. 2023. Iss. 2. pp. 81–92.
59. Tisnado J. O. Z., Bondareva O. S., Hristosova V. Yu. Structure Degradation of the Plasma Spray Thermal Barrier Coating on the Blade During Operation. Letters on Materials. 2019. Vol. 9, Iss. 2. pp. 228–233.
60. Komarov D. V., Konovalov S. V., Zhukov D. V., Vinogradov I. S., Panchenko I. A. Analysis of The Current Situation in the Field Of Application of Electron-Beam Processing of Various Alloys. Part 1. Polzunovskiy Vestnik. 2021. Iss. 4. pp. 129–139.
61. Belkin P. N., Kusmanov S. A. Plasma Electrolytic Boriding of Steels and Titanium Alloys (Review). Elektronnaya Obrabotka Materialov. 2018. Iss. 5. pp. 1–30.
62. Shlyarov V. V., Zagulyayev D. V. Increase in the fatigue life of the AK5M2 alloy modified by plasma-assisted arc deposition of metal coatings. Development of the productive forces of Kuzbass: history, modern experience, and future strategy: Proceedings of the International Scientific and Practical Conference. In 4 volumes, Moscow, November 17–23, 2023. Moscow: Russian Academy of Sciences, 2024. pp. 143–147.
63. Belkin P. N., Borisov A. M., Kusmanov S. A. Plasma Electrolytic Saturation of Titanium and Its Alloys with Interstitial Elements. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. 2016. Iss. 5. pp. 54–74.

Полный текст статьи Modern methods of applying ceramic coatings to titanium alloys: prospects and technological solutions
Назад