Журналы →  Obogashchenie Rud →  2025 →  №5 →  Назад

SECONDARY RAW MATERIAL PROCESSING
Название Leaching of zinc from aged flotation tailings of polymetallic ores using sulfate and chloride-hypochlorite solutions
DOI 10.17580/or.2025.05.07
Автор Rasskazova A. V., Sekisov A. G.
Информация об авторе

Mining Institute of the Far Eastern Branch of RAS (Khabarovsk, Russia)

Rasskazova A. V., Leading Researcher, PhD in Engineering Sciences, annbot87@mail.ru
Sekisov A. G., Chief Researcher, Doctor of Engineering Sciences, sekisovag@mail.ru

Реферат

In response to declining cut-off grades in mined ores, there is increasing interest in the recovery of valuable metals from manmade mineral formations such as beneficiation tailings. Polymetallic ore tailings represent complex secondary mineral resources with potential economic value. This study evaluates the hydrometallurgical recovery of zinc from aged lead-zinc flotation tailings, where the initial zinc content is approximately 0.6 wt.% and primarily occurs as sphalerite. Silver, at about 30 g/t, also presents potential by-product value. The process consists of two stages: initially, the tailings were impregnated with activated leaching solutions and allowed to undergo diffusion intrapore leaching. Subsequently, atmospheric agitation leaching was performed at room temperature. Sodium hypochlorite served as the primary zinc solvent, applied either directly or following diffusion pre-oxidation using sodium hypochlorite or sulfuric acid solutions, with or without supplementary ozone saturation. Direct chloride leaching achieved a zinc extraction of 28.7 %. Optimization of process parameters, including solid-to-liquid (S : L) ratio and leaching duration, increased extraction to 47 % via diffusion pore leaching. The active sodium hypochlorite solution was synthesized electrochemically. Zinc extraction during hypochlorite leaching with sulfuric acid pre-oxidation averaged 19 %, while ozonation of sulfuric acid solution followed by hypochlorite leaching increased extraction to 22.4 %. For low-grade mineral residues such as beneficiation tailings, heap leaching preceded by pelletizing emerges as a costeffective technological option for zinc recovery.

Ключевые слова Lead-zinc ores, flotation tailings, sulfuric acid, active chloride solution, sodium hypochlorite, photoactivation, ozone, oxidizer
Библиографический список

1. Methodological recommendations on the application of the Classification of reserves of deposits and forecast resources of solid minerals. Lead and zinc ores. No. 37-р, 05.06.2007. 40 p.
2. Aleksandrova T. N., Orlova A. V., Taranov V. A. Current status in the copper ore processing (review). Izvestiya Vysshikh Uchebnykh Zavedeniy. Tsvetnaya Metallurgiya. 2021. Vol. 27, No. 3. pp. 4–14.
3. Shirima J., Wikedzi A., Rasskazova A. V. Investigation of old waste dump composition of lean gold-bearing ores from the Golden Pride Project (GPP) mining operation in Nzega district, Tanzania. Gornye Nauki i Tekhnologii. 2024. Vol. 9, No. 1. pp. 5–11.
4. Aleksandrova T. N., Ushakov E. K., Orlova A. V. Method of complex copper-zinc ore typification using neural network models. Gornyi Informatsionno-analiticheskiy Byulleten'. 2020. No. 5. pp. 140–147.
5. Litvinova N. M., Gurman M. A., Rasskazova A. V., Aleksandrova T. N. Research of mineralogical-technological peculiarities of refractory gold-bearing ores. Eurasian Mining. 2014. No. 1. pp. 28–33.
6. Alajoki J., Karppinen A., Rinne T., Serna-Guerrero R., Lundström M. Leaching strategies for the recovery of Co, Ni, Cu and Zn from historical tailings. Minerals Engineering. 2024. Vol. 217. DOI: 10.1016/j.mineng.2024.108967
7. Li Zh., Xia Zh., Liu Sh., Ye L., Qi J., Li X. Recovery of zinc and lead by simultaneously leaching from lead slag fuming dust with ammonium chloride solution. Transactions of Nonferrous Metals Society of China. 2024. Vol. 34, Iss. 12. pр. 4075–4084.
8. Abo Atia Th., Spooren J. Microwave assisted chloride leaching of zinc plant residues. Journal of Hazardous Materials. 2020. Vol. 398. DOI: 10.1016/j.jhazmat.2020.122814
9. Al-Harahsheh M., Kingman S. The influence of microwaves on the leaching of sphalerite in ferric chloride. Chemical Engineering and Processing – Process Intensification. 2007. Vol. 46, Iss. 10. pp. 883–888.
10. Chanturiya E. L., Chanturiya V. A., Zhuravleva E. S. Prospects of application of water preparation of electrochemical technology in copper-zinc ores flotation. Tsvetnye Metally. 2016. No. 1. pp. 13–19.
11. Godočíková E., Baláž P., Boldižárová E. Structural and temperature sensitivity of the chloride leaching of copper, lead and zinc from a mechanically activated complex sulphide. Hydrometallurgy. 2002. Vol. 65, Iss. 1. pp. 83–93.
12. Chanturia V. A., Chanturia E. L., Minenko V. G., Samusev A. L. Acid leaching process intensification for eudialyte concentrate based on energy effects. Obogashchenie Rud. 2019. No. 3. pp. 29–36.
13. Chanturia V. A., Bunin I. Z., Ryazantseva M. V., Chanturia E. L., Samusev A. L., Koporulina E. V., Anashkina N. E. Intensification of eudialyte concentrate leaching by nanosecond high-voltage pulses. Journal of Mining Science. 2018. Vol. 54, Iss. 4. pp. 646–655.
14. Rasskazova A. V., Sekisov A. G., Galim'yanov A. A. Copper leaching using mixed explosive-and-reagent pre-treatment of ore body. Fiziko-tekhnicheskie Problemy Razrabotki Poleznykh Iskopayemykh. 2023. No. 6. pp. 166–175.

15. Crundwell F. K. The impact of light on the rate and mechanism of dissolution and leaching of natural ironcontaining sphalerite, (Zn, Fe)S. Minerals Engineering. 2021. Vol. 160. DOI: 10.1016/j.mineng.2020.106702
16. Dehghan R., Noaparast M., Kolahdoozan M. Leaching and kinetic modelling of low-grade calcareous sphalerite in acidic ferric chloride solution. Hydrometallurgy. 2009. Vol. 96, Iss. 4. pp. 275–282.
17. Aydogan S., Aras A., Canbazoglu M. Dissolution kinetics of sphalerite in acidic ferric chloride leaching. Chemical Engineering Journal. 2005. Vol. 114, Iss. 1–3. pp. 67–72.
18. Godirilwe L. L., Oinuma R., Batnasan A., et al. Arsenic immobilization from high-As sulfide copper ores through high-pressure leaching with ferric and sodium chloride media. Journal of Environmental Chemical Engineering. 2024. Vol. 12, Iss. 5. DOI: 10.1016/j.jece.2024.113884
19. Santos S. M. C., Machado R. M., Correia M. J. N., Reis M. T. A., Ismael M. R. C., Carvalho J. M. R. Ferric sulphate / chloride leaching of zinc and minor elements from a sphalerite concentrate. Minerals Engineering. 2010. Vol. 23, Iss. 8. pp. 606–615.
20. Nan T., Yang J., Aromaa-Stubb R., Zhu Q., He H., Lundström M. Extracting valuable metals from zinc sulfide concentrate: A comprehensive simulation-based life cycle assessment study of oxidative pressure leaching. Minerals Engineering. 2024. Vol. 216. DOI: 10.1016/j.mineng.2024.108888
21. Krylova L.N. Efficiency of using ozone for extraction of metals from mineral raw materials. Izvestiya Vysshikh Uchebnykh Zavedeniy. Tsvetnaya Metallurgiya. 2022. Vol. 28, No. 2. pp. 4–15.
22. Krylova L.N. Intensification of sulfuric acid leaching of copper from sulfide concentrates with the use of ozone and iron ions. Izvestiya Vysshikh Uchebnykh Zavedeniy. Tsvetnaya Metallurgiya. 2019. No. 6. pp. 4–12.
23. Gui Q., Hu Y., Zhang L. Mechanism of synergistic pretreatment with ultrasound and ozone to improve gold and silver leaching percentage. Applied Surface Science. 2022. Vol. 576, Pt. A. DOI: 10.1016/j.apsusc.2021.151726
24. Piervandi Z. Pretreatment of refractory gold minerals by ozonation before the cyanidation process: A review. Journal of Environmental Chemical Engineering. 2023. Vol. 11, Iss. 1. DOI: 10.1016/j.jece.2022.109013
25. Kunaev A. M., Beisembaev B. B., Katkov Yu. A. Underground leaching of lead-zinc ores. Alma-Ata: Nauka, 1986. 208 p.
26. Rasskazov I. Y., Sekisov A. G., Rasskazova A. V. Insitu leaching of molybdenum and uranium by percarbonate
and chloride-hypochlorite solutions. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 623–631.
27. Pramanik S., Kumari A., Sahu S. K., Munshi B. Extraction of metal values from iron-rich mine tailings via chloridized roasting and water leaching. Waste Management Bulletin. 2024. Vol. 2, Iss. 2. pp. 113–121.
28. Gudkov S. S., Dementyev V. E., Druzhina G. Ya. Heap leaching of gold and silver. Irkutsk: JSC Irgiredmet, 2004. 352 p.
29. Sekisov A. G., Rasskazova A. V., Litvinova N. M., Kirilchuk M. S. Integrated heap leaching of rebellious gold from altered mineral waste. Gornyi Informatsionnoanaliticheskiy Byulleten'. 2019. No. 8. pp. 198–208.
30. Kirilchuk M. S., Rasskazova A. V. Complete extraction of difficult gold from technogenically transformed mineral raw materials using activation heap leaching. Problemy Nedropolzovaniya. 2019. No. 2. pp. 101–106.

Language of full-text русский
Полный текст статьи Получить
Назад