Журналы →  Tsvetnye Metally →  2025 →  №8 →  Назад

COMPOSITES AND MULTIPURPOSE COATINGS
Название The possibility of using an evaporable plastic block mold made by 3D printing for forming a hard alloy milling cutter
DOI 10.17580/tsm.2025.08.04
Автор Dvornik M. I., Mikhailenko E. A., Burkov A. A., Chernyakov E. V.
Информация об авторе

Khabarovsk Federal Research Center of the Far Eastern Branch of the Russian Academy of Sciences Institute of Materials Science of the Far Eastern Branch of the Russian Academy of Sciences (IM FEB RAS), Khabarovsk, Russia

M. I. Dvornik, Senior Researcher, Candidate of Technical Sciences, e-mail: maxxxx80@mail.ru
E. A. Mikhailenko, Senior Researcher, Candidate of Physical and Mathematical Sciences, e-mail: mea80@list.ru
A. A. Burkov, Senior Researcher, Candidate of Physical and Mathematical Sciences, e-mail: burkovalex@mail.ru
E. V. Chernyakov, laboratory assistant, e-mail: tchernyakoffevgeny@yandex.ru

Реферат

The article studies the pressing of WC – 5 TiC – 10 Co hard alloy milling cutter blanks into evaporable polylactide molds made by 3D printing and subsequent sintering of samples in a vacuum furnace. The content of plasticizer (rubber) in powder mixtures for pressing blanks of WC – 5 TiC – 10 Co alloy samples is, % (vol.): 13; 23; 38; 48. Disposable molds for pressing milling cutters are made of polylactide by surfacing. Experiments show that such plastic molds enclosed in a steel shell can withstand a pressure of 400 MPa. The dependences of the integrity and density of blanks and sintered samples on the pressing pressure and concentration of plasticizer are investigated. It is demonstrated that an increase in its concentration from 13 to 48%(vol.) leads to a decrease in the relative density of sintered samples from 99.2 to 96.0% due to an increase in the concentration of free carbon inclusions. The results of the research demonstrate that if a plasticizer concentration is less than 38%(vol.), the samples are destroyed due to thermal stresses. The products made with 48%(vol.) plasticizer retain their integrity. The microstructures of the surface, longitudinal and cross sections of sintered milling cutters are investigated. Despite the fact that the required density is achieved, surface defects and high porosity (due to the presence of free carbon and defects formed during mold deformation) do not allow to make products that meet modern requirements. Further research is needed to produce milling cutters that meet modern requirements using the proposed method.
The research was supported by RGNF grant No. 23-29-00063.

Ключевые слова Hard alloy, WC – 5 TiC – 10 Co, plasticizer, FDM 3D printing, mould, polylactide, pressing, milling cutter, sintering, density
Библиографический список

1. Dvornik M. I., Mikhaylenko E. A. Production of gradient ultrafine-grained hard alloys from powders obtained from scrap VK15 alloy dispersed in water and scrap VK8 alloy dispersed in oil. Tsvetnye Metally. 2021. No. 3. pp. 84–90.
2. Dvornik M. I., Mikhailenko E. A. Study of the composition, structure and properties of a graded hard alloy as a result of sintering of ultrafine-grained and medium-grained layers. Tsvetnye Metally. 2018. No. 4. pp. 67–72.
3. Buravlev I. Y., Shichalin O. O., Belov A. A., Marmaza P. A. et al. Microstructural evolution and mechanical behavior of WC – 4wt.%TiC –3wt.%TaC –12wt.%Co refractory cermet consolidated by spark plasma sintering of mechanically activated powder mixtures. Advanced Powder Technology. 2024. Vol. 35, No. 10. 104625.
4. Dvornik M. I., Mikhailenko E. A. Preparation of powder by electrical discharge erosion and sintering of ultrafine WC – 5 TiC – 10 Co alloy with high hardness. International Journal of Refractory Metals and Hard Materials. 2023. Vol. 112. 106154.
5. Buravlev I. Y., Shichalin O., Papynov E., Golub A. et al. WC – 5 TiC – 10 Co hard metal alloy fabrication via mechanochemical and SPS techniques. International Journal of Refractory Metals and Hard Materials. 2021. Vol. 94. 105385.
6. Mokritskiy B., Solovyov V., Vereshchagin V., Sablin P. Improving the competitiveness of carbide end mills. Uprochnyayushchie Tekhnologii i Pokrytiya. 2017. No. 6. pp. 247–250.
7. Anikeev A. I., Vereshchaka A. A., Vereshchaka A. S., Bublikov Yu. I. Ultrafine hard alloys as a tool material for milling hard-to-process materials. Izvestiya vysshih uchebnyh zavedenij. Povolzhskij region. Tekhnicheskie nauki. 2015. No. 3. pp. 152–162.
8. Yang Y., Zhang C., Wang D., Nie L. et al. Additive manufacturing of WC – Co hardmetals: a review. International Journal of Advanced Manufacturing Technology. 2020. Vol. 108, No. 506. pp. 1653–1673.
9. Aramian A., Razavi S. M. J., Sadeghian Z., Berto F. A review of additive manufacturing of cermets. Additive Manufacturing. 2020. Vol. 33. 101130.
10. Chen C., Huang B., Liu Z., Li Y. et al. Additive manufacturing of WC – Co cemented carbides: process, microstructure, and mechanical properties. Additive Manufacturing. 2023. Vol. 63. 103410.
11. Chen J., Huang M. J., Fang Z. Z., Koopman M. et al. Microstructure analysis of high density WC-Co composite prepared by one step selective laser melting. International Journal of Refractory Metals & Hard Materials. 2019. Vol. 84. 104980.
12. Li C. W., Chang K. C., Yeh A. C. On the microstructure and properties of an advanced cemented carbide system processed by selective laser melting. Journal of Alloys and Compounds. 2019. Vol. 782. pp. 440–450.
13. Gu D. D., Meiners W. Microstructure characteristics and formation mechanisms of in situ WC cemented carbide based hardmetals prepared by Selective Laser Melting. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 2010. Vol. 527, No. 29-30. pp. 7585–7592.
14. Domashenkov A., Borbely A., Smurov I. Structural modifications of WC/Co nanophased and conventional powders processed by selective laser melting. Materials and Manufacturing Processes. 2017. Vol. 32, No. 1. pp. 93–100.
15. Fortunato A., Valli G., Liverani E., Ascari A. Additive manufacturing of WC – Co cutting tools for gear production. Lasers in Manufacturing and Materials Processing. 2019. Vol. 6, No. 3. pp. 247–262.
16. Khmyrov R. S., Shevchukov A. P., Gusarov A. V., Tarasova T. V. Phase composition and microstructure of WC – Co alloys obtained by selective laser melting. Mechanics & Industry. 2017. Vol. 18, No. 7. 714.
17. Khmyrov R. S., Safronov V. A., Gusarov A. V. Obtaining crack-free WC – Co alloys by selective laser melting. Laser Assisted Net Shape Engineering 9 International Conference on Photonic Technologies Proceedings of the Lane 2016. 2016. Vol. 83. pp. 874–881.
18. Grigoriev S., Tarasova T., Gusarov A., Khmyrov R., Egorov S. Possibilities of manufacturing products from cermet compositions using nanoscale powders by additive manufacturing methods. Materials. 2019. Vol. 12, Iss. 20. 3425.
19. Khmyrov R. S., Safronov V. A., Gusarov A. V. Synthesis of nanostructured WC – Co hardmetal by selective laser melting. Iutam Symposium on Growing Solids. 2017. Vol. 23. pp. 114–119.
20. Uhlmann E., Bergmann A., Bolz R. Manufacturing of carbide tools by selective laser melting. 15th Global Conference on Sustainable Manufacturing. 2018. Vol. 21. pp. 765–773.
21. Bricín D., Kříž A. Processability of WC –Co powder mixtures using SLM additive technology. MM Science Journal. 2019. Vol. 2. pp. 2939–2945.
22. Uhlmann E., Bergmann A., Gridin W. Investigation on additive manufacturing of tungsten carbide-cobalt by selective laser melting. 15th Machining Innovations Conference for Aerospace Industry (MIC). Vol. 35 : Procedia CIRP – Garbsen, Germany, 2015. pp. 8–15.
23. Ku N., Pittari J. J., Kilczewski S., Kudzal A. Additive manufacturing of cemented tungsten carbide with a cobalt-free alloy binder by selective laser melting for high-hardness applications. JOM. 2019. Vol. 71, Iss. 4. pp. 1535–1542.
24. Campanelli S. L., Contuzzi N., Posa P., Angelastro A. Printability and microstructure of selective laser melting of WC/Co/Cr powder. Materials. 2019. Vol. 12, Iss. 15. 2397.
25. Zhang L., Hu C., Yang Y., Misra R. et al. Laser powder bed fusion of cemented carbides by developing a new type of Co coated WC composite powder. Additive Manufacturing. 2022. Vol. 55. 102820.
26. Suzuki A., Shiba Y., Ibe H., Takata N., Kobashi M. Machine-learning assisted optimization of process parameters for controlling the microstructure in a laser powder bed fused WC/Co cemented carbide. Additive Manufacturing. 2022. Vol. 59. 103089.
27. Maurya H., Kosiba K., Juhani K., Sergejev F., Prashanth K. Effect of powder bed preheating on the crack formation and microstructure in ceramic matrix composites fabricated by laser powder-bed fusion process. Additive Manufacturing. 2022. Vol. 58. 103013.
28. Mostafaei A., De Vecchis P. R., Kimes K. A., Elhassid D., Chmielus M. Effect of binder saturation and drying time on microstructure and resulting properties of sinter-HIP binder-jet 3D-printed WC-Co composites. Additive Manufacturing. 2021. Vol. 46. 102128.
29. Xu Z. K., Meenashisundaram G. K., Ng F. L. High-density WC – 45 Cr – 18Ni cemented hard metal fabricated with binder jetting additive manufacturing. Virtual and Physical Prototyping. 2022. Vol. 17, Iss. 1. pp. 92–104.
30. Mariani M., Goncharov I., Mariani D., De Gaudenzi G. P. et al. Mechanical and microstructural characterization of WC – Co consolidated by binder jetting additive manufacturing. International Journal of Refractory Metals & Hard Materials. 2021. Vol. 100. 105639.
31. Cramer C. L., Wieber N. R., Aguirre T. G., Lowden R. A., Elliott A. M. Shape retention and infiltration height in complex WC – Co parts made via  binder jet of WC with subsequent Co melt infiltration. Additive Manufacturing. 2019. Vol. 29. 100828.

32. Cramer C. L., Nandwana P., Lowden R. A., Elliott A. M. Infiltration studies of additive manufacture of WC with Co using binder jetting and pressureless melt method. Additive Manufacturing. 2019. Vol. 28. pp. 333–343.
33. Enneti R. K., Prough K. C., Wolfe T. A., Klein A et al. Sintering of WC – 12%Co processed by binder jet 3D printing (BJ3DP) technology. International Journal of Refractory Metals & Hard Materials. 2018. Vol. 71. pp. 28–35.
34. Enneti R. K., Prough K. C. Wear properties of sintered WC – 12%Co processed via Binder Jet 3D Printing (BJ3DP). International Journal of Refractory Metals & Hard Materials. 2019. Vol. 78. pp. 228–232.
35. Kim H., Kim J.-I., Do Kim Y., Jeong H., Ryu S.-S. Material extrusionbased three-dimensional printing of WC – Co alloy with a paste prepared by powder coating. Additive Manufacturing. 2022. Vol. 52. 102679.
36. Carreno-Morelli E., Alveen P., Moseley S., Rodriguez-Arbaizar M., Cardoso K. Three-dimensional printing of hard materials. International Journal of Refractory Metals & Hard Materials. 2020. Vol. 87. pp. 105110.
37. Zhang X. Y., Guo Z. M., Chen C. G., Yang W. W. Additive manufacturing of WC-20Co components by 3D gel-printing. International Journal of Refractory Metals & Hard Materials. 2018. Vol. 70. pp. 215–223.
38. Lengauer W., Duretek I., Fuerst M., Schwarz V. et al. Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet components. International Journal of Refractory Metals & Hard Materials. 2019. Vol. 82. pp. 141–149.
39. Padmakumar M. Additive manufacturing of tungsten carbide hardmetal parts by selective laser melting (SLM), selective laser sintering (SLS) and binder jet 3D printing (BJ3DP) techniques. Lasers Manuf. Mater. Process. 2020. Vol. 7. pp. 338–371.
40. Kim H., Kim J. I., Ryu S. S., Jeong H. Cast WC-Co alloy-based tool manufacturing using a polymeric mold prepared via digital light processing 3D printing. Materials Letters. 2022. Vol. 306. 130979.
41. Zhao Z. C., Li X. H., Zhang Y., He C. W. et al. Fabrication and mechanical properties of large-scale SiC impeller via vacuum gelcasting and pressureless sintering. International Journal of Applied Ceramic Technology. 2020. Vol. 17, Iss. 4. pp. 1713–1722.
42. Liu K., Zhou C. Y., Chen F. J., Sun H. J., Zhang K. Fabrication of complicated ceramic parts by gelcasting based on additive manufactured acetonesoluble plastic mold. Ceramics International. 2020. Vol. 46, Iss. 16. DOI: 10.1016/j.ceramint.2020.06.313
43. Montanaro L., Coppola B., Palmero P., Tulliani J. M. A review on aqueous gelcasting: A versatile and low-toxic technique to shape ceramics. Ceramics International. 2019. Vol. 45, Iss 7. pp. 9653–9673.
44. Chen F. J., Liu K., Sun H. J., Shui Z. H. et al. Fabrication of complicated silicon carbide ceramic components using combined 3D printing with gelcasting. Ceramics International. 2018. Vol. 44, Iss. 1. pp. 254–260.
45. Dvornik M., Mikhailenko E., Burkov A. A., Kolzun D. 3D printed plastic molds utilization for WC-15Co cemented carbide cold pressing. International Journal of Refractory Metals and Hard Materials. 2023. Vol. 115, Iss. 23. DOI: 10.1016/j.ijrmhm.2023.106312
46. Dvornik M., Mikhailenko E., Burkov A., Chernyakov E. Investigation of the characteristics of WC – 5 TiC – 10 Co hard alloy cutting plates obtained using a plastic mold made by 3D printing. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsionalnye pokrytiya. 2024. Vol. 18, Iss. 5. pp. 55–65.
47. Dvornik M. I., Mikhailenko E. A., Burkov A. A., Kolzun D. A. Dependence of Density, Hardness, Strength, and Dimensions of WC – 15 Co Hard Alloy Samples on the Plasticizer Content in Workpieces Obtained Using a Plastic Mold Made by 3D Printing. Inorganic Materials: Applied Research. 2024. Vol. 15, Iss. 5. pp. 1457–1465.
48. Dvornik M., Shichalin O., Mikhailenko E., Burkov A. et al. Uniaxial compaction and sintering of ZrO2 – 3 mol% Y2O3 using rubber and PEG solutions as binders. Materials Chemistry and Physics. 2024. Vol. 328. 129981.
49. GOST 3882–74. Sintered solid alloys. Grades. Introduced. 01.01.1976.

Language of full-text русский
Полный текст статьи Получить
Назад