Journals →  Chernye Metally →  2025 →  #6 →  Back

Metal Science and Heat Treatment
ArticleName Influence heat treatment on the properties and microstructure of castings of complex alloyed irons
DOI 10.17580/chm.2025.06.08
ArticleAuthor S. Yu. Volkov, M. G. Potapov, D. E. Belkin, A. A. Gulakov
ArticleAuthorData

Kyrgyz-Russian Slavic University named after the first President of the Russian Federation B. N. Yeltsin, Bishkek, Kyrgyz Republic ; Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia

S. Yu. Volkov, Cand. Eng., Associate Prof., Acting Rector1, Dept. of Foundry Processes and Materials Science2

 

Nosov Magnitogorsk State Technical University, Magnitogorsk, Russia.
M. G. Potapov, Cand. Eng., Associate Prof., Dept. of Foundry Processes and Materials Science, e-mail: potapovmg@mail.ru;
D. E. Belkin, Postgraduate Student, Dept. of Foundry Processes and Materials Science

 

Kushva Roll Manufacturing Factory, Kushva, Russia.

A. A. Gulakov, Chief Metallurgist

Abstract

Complex-alloyed white cast irons are an extremely important class of structural materials with a combination of unique properties. Mechanical properties such as hardness, strength and wear resistance, as well as the structure of castings from these cast irons are determined by their composition and crystallization conditions, which determine the structural features and mutual arrangement of phases and, to no lesser extent, by the conditions of heat treatment. The metal base of the studied complex-alloyed high-chromium cast irons consists of austenite and its decomposition products (martensite, troostite, pearlite). The amount of austenite decomposition products is determined primarily by the chemical composition and crystallization conditions. Elements that stabilize austenite in the eutectoid temperature range (nickel, manganese, copper, molybdenum) contribute to an increase in the proportion of martensite and troostite in the cast state, and during quenching allow obtaining only a martensitic matrix. This is especially evident in the complex alloying of white cast irons with elements that increase its hardenability and quenchability: Ni, Mo, Cu, Mn, B, Ti. The results of the comparative study clearly illustrate the slight difference in the properties of cast irons with different types of heat treatment. The difference between the minimum and maximum values of hardness and wear resistance does not exceed 15 % on average. Thus, in some cases, it is possible to avoid the expensive operation of heat treatment - normalization, and subject the castings only to tempering at a temperature of 300-400 °C. It is also not recommended to use castings without heat treatment due to high residual stresses, which can contribute to their destruction under operating conditions.

keywords Normalization, tempering, annealing, hardenability, complex-alloyed cast irons, hardness, strength, wear resistance, microstructure, castings
References

1. Tsypin I. I. White wear-resistant cast irons. Structure and properties. Moscow : Izdatelstvo Metallurgiya, 1988. 256 p.
2. Garber M. E. Castings from white wear-resistant cast iron. Moscow : Izdatelstvo Mashinostroenie, 1972. 112 p.
3. Rozhkova E. V., Romanov S. M. Optimization of compositions of wear-resistant chromium cast irons. Metallovedenie i termicheskaya obrabotka metallov. 1984. No. 10. pp. 45–50.
4. Sherman A. D., Zhukov A. A., Abdullaev E. V., et al. Cast Iron. Edited by Sherman A. D. and Zhukov A. A. 1st edition. Moscow: Metallurgiya, 1991. 576 p.
5. Kositsina I. I., Sagaradze V. V., Makarov A. V. et al. The influence of structure on the properties of white chromium cast irons. Metallovedenie i termicheskaya obrabotka metallov. 1996. No. 4. pp. 7–10.
6. Kolokoltsev V. M., Nazarov O. A. Wear-resistant cast irons for casting parts of shot blasting chambers. Liteynoe proizvodstvo. 1992. No. 7. pp. 11-12.
7. Rozhkova E. V., Romanov O. M. Hardenability of wear-resistant alloyed cast irons. Metallovedenie i termicheskaya obrabotka metallov. 1985. No. 7. pp. 16–18.
8. Kolokoltsev V. M., Potapov M. G., Mikhalkina I. V. Castings from special cast irons. Magnitogorsk : Nosov Magnitogorsk State Technical University, 2022.
9. Shebatinov M. P., Boldyrev E. V. Effect of heat treatment on the structure and properties of white cast iron. Liteynoe proizvodstvo. 1987. No. 2. pp. 8–10.
10. Garber M. E., Rozhkova E. V., Tsypin I. I. Effect of carbon, chromium, silicon and manganese on hardenability and wear resistance of white cast irons. Metallovedenie i termicheskaya obrabotka metallov. 1969. No. 5. pp. 11–14.
11. Prosvirin K. V., Tutov I. V., Entin S. D. Features of phase transformations of high-chromium cast irons. Trudy TsIITMASH. 1974. No. 116. 80 p.
12. Potapova M. S., Morozova I. G., Sokol I. Ya. Secondary hardness of alloyed white cast irons. Metallovedenie i termicheskaya obrabotka metallov. 1985. No. 7. pp. 18–20.
13. Sare I. R., Arnold В. К. The effect of neat treament on the gouging abrasion resistance of alloy white cast irons. Met. and Mater. Trans. A. 1995. Vol. 26, Iss. 2. 357.
14. Sinatora А., Роhl М., Waldherr E.-U. Wear induced martensite in high chromium cast iron. Scripta Metallurgica et Materialia. 1995. Vol. 32, Iss. 6. pp. 857-861.
15. GOST 4832-95. Foundry pig iron. Specifications. Introduced: 01.07.1999.
16. GOST 2787-2019. Ferrous secondary metals. General specifications. Introduced: 01.05.2022.
17. GOST 1415-93 (ISO 5445-80). Ferrosilicium. Specification and conditions of delivery. Introduced: 01.01.1997.
18. GOST 4755-91 (ISO 5446-80). Ferromanganese. Specification and conditions of delivery. Introduced: 01.01.1997.
19. GOST 4757-91 (ISO 5448-81). Ferrochromium. Specification and conditions of delivery. Introduced: 01.01.1993.
20. GOST 4759-91 (ISO 5452-80). Ferromolybdenum. Specification and conditions of delivery. Introduced: 01.01.1993.
21. GOST 17293-93 (ISO 5450-80). Ferrotungsten. Specification and conditions of delivery. Introduced: 01.07.1995 .
22. GOST 849-97. Primary nickel. Specifications. Introduced: 01.07.1998.
23. GOST 859-2001. Copper. Grades. Introduced: 01.03.2002.
24. GOST 4761-91 (ISO 5454-80). Ferrotitanium. Specification and conditions of delivery. Introduced: 01.01.1993.
25. GOST 1089-82. Antimony. Specifications. Introduced: 01.01.1983.
26. GOST 4756-91 (ISO 5447-80). Ferrosilicomanganese. Specification and conditions of delivery. Introduced: 01.01.1997.
27. GOST 14848-69. Ferroboron. Specifications. Introduced: 01.07.1970.
28. GOST 295-98. Aluminium for deoxidation, manufacture of ferroalloys and aluminothermy. Specifications. Introduced: 01.07.2001.
29. GOST R 8.585.2001. Thermocouples. Nominal static characteristics of conversion. Introduced: 01.07.2002.
30. GOST 22975-78. Metals and alloys. Rockwell hardness test under low loads (using SuperRockwell test). Introduced: 01.01.1979.
31. GOST 9454-78. Metals. Method for testing the impact strength at low, room and high temperature. Introduced: 01.01.1979.
32. GOST 23.208-79. Wear resistance testing of materials by friction against loosely fixed abrasive particles. Introduced: 01.03.1981.
33. GOST 1497-84. Metals. Methods of tension test. Introduced: 01.01.1986.
34. GOST 7769-82. Alloy cast iron for castings of special properties. Grades. Introduced: 01.01.1983.
35. Unkic P., Popovic I., Zupan D. Vliyaniye termoobrabotki na svoystva visokochromnogo litya. Ljevarstvo. 1994. Vol. 36, Iss. 3. pp. 59–65.
36. Volkov S. Yu., Kolokoltsev V. M., Potapov M. G. Interrelation of mechanical properties of wearresistant cast irons and manganese steels. Liteynoe proizvodstvo. 2023. No. 11. pp. 6-10.
37. Gulakov A. A., Potapov M. G. Development and implementation of the heat treatment mode for rolls for finishing stands of hot rolling mills in the conditions of Kushva Roll Manufacturing Factory. Liteynoe proizvodstvo. 2023. No. 12. pp. 6-11.
38. Kolokoltsev V. M., Petrochenko E. V., Molochkova O. S. Metallurgical factors influencing the composite structure, mechanical and operational properties of complex-alloyed white cast irons. Liteyshchik Rossii. 2023. No. 8. pp. 23-26.
39. Kolokoltsev V. M., Vdovin K. N., Sinitsky E. V., Feoktistov N. A. Evaluation of operational durability and modeling of manufacturing technology of the casting “Excavator bucket tooth”. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta imeni G. I. Nosova. 2015. No. 4 (52). pp. 61-64.
40. Abdel-Aziz Kh., El-Shennawy M., Adel O. Microstructural characteristics and mechanical properties of heat treatment high-cr white cast iron alloys. International Journal of Applied Engineering Research. 2017. Vol. 12, Iss. 14. pp. 4675 – 4686.
41. Bedolla-Jacuinde A., Guerra F. V., Mejı ́a I, Zuno-Silva J. et al. Abrasive wear of V–Nb–Ti alloyed high-chromium white irons. Wear. 2015. Vol. 332–333. pp. 1006–1011.
42. Kawalec M. Modification of the high-alloyed white cast iron microstructure with magnesium master alloy. Archives of Foundry Engineering. 2013. Vol. 13, Iss. 2. pp. 71-74.
43. Potapov M. G., Zaritskii B. B., Kuts N. A. Development and introduction of a new composition of wear-resistant cast iron with improved performance properties for castings of pump parts. Materials Science Forum. 2022. Vol. 1052 MSF. pp. 304-312. DOI: 10.4028/p-ced6u8
44. Potapov M. G., Zaritskii B. B., Kuts N. A. The effect of cooling rate on structure, basic mechanical and special properties of complex alloyed manganese cast iron. Materials Science Forum. 2022. Vol. 1052 MSF. pp. 292-303. DOI: 10.4028/p-5dbr6e

Language of full-text russian
Full content Buy
Back