Журналы →  Chernye Metally →  2025 →  №6 →  Назад

Steelmaking
Название On the numerical modeling of the process of melt bubbling with a hydrocarbon mixture in a liquid-phase reduction reactor
DOI 10.17580/chm.2025.06.03
Автор K. V. Strogonov, A. K. Bastynets, D. D. Lvov, V. A. Murashov
Информация об авторе

MPEI National Research University, Moscow, Russia

K. V. Strogonov, Cand. Eng., Associate Prof., e-mail: strogonovkv@mpei.ru
A. K. Bastynets, Student
D. D. Lvov, Postgraduate Student
V. A. Murashov, Student

Реферат

A numerical modeling of the melt bubbling with methane in a liquid-phase reduction reactor for commercially pure iron (ARMCO-iron) was performed using CFD modeling approaches implemented in the ANSYS Fluent (VOF model) and ANSYS CFX (Euler dispersed phase model) software packages. The studies were conducted to explore the temperature field on the reactor lining and to check the adequacy of numerical approaches for describing high-temperature bubbling processes in metallurgy. The thermal state of the reactor lining was analyzed, the characteristics of gas-liquid interaction and flow structure were studied. The results showed that the simulated bubbling mode corresponds to a developed bubble flow with a gas filling of about 23 %, which is confirmed by experimental data for similar conditions. The maximum temperature of the inner surface of the reactor lining does not exceed 1600 °C, which is significantly lower than the permissible level for the refractory material used. The obtained results confirm the operability of the reactor design and the effectiveness of numerical modeling methods for predicting its operating modes.
The study was supported by the Russian Science Foundation grant No. 24-29-00421, https://rscf.ru/project/24-29-00421/.

Ключевые слова Bubbling, numerical modeling, hydrocarbon mixture, reduction, energy efficiency, iron, steel
Библиографический список

1. Kartavtsev S. V., Neshporenko E. T., Matveev S. V. Primary diagnosis of energy efficiency in an integrated steel plant, based on intensive energy-saving methodology. Part 1. CIS Iron and Steel Review. 2021. Vol. 22. pp. 107–110.
2. Kartavtsev S. V., Neshporenko E. G., Matveev S. V. Primary diagnosis of energy efficiency in an integrated steel plant, based on intensive energy-saving methodology. Part 2. CIS Iron and Steel Review. 2022. Vol. 23. pp. 113–118.
3. Golubev O. V., Nedelin S. V., Torokhov G. V., Travyanov A. Ya. et al. Iron and cast iron metallurgy: raw materials and technological support, logistics, development forecasts. Collection of works of the XVII International Congress of steelmakers and metal producers “From ore to steel - ISCON-2023”. 2023. pp. 26–34.
4. Strogonov K. V., Lvov D. D., Murashov V. A., Bastynets A. K. et al. Liquid-phase reduction reactor with a carbonhydrogen mixture. Proceedings of the 2024 6th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE 2024). 2024. DOI: 10.1109/REEPE60449.2024.10479685
5. Strogonov K. V., Borisov A. A., Murashov V. A., Lvov D. D. Calculation of individual elements of enclosing structures of a continuous steelmaking unit. Proceedings of the 2023 5th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE 2023). 2023. DOI: 10.1109/REEPE57272.2023.10086855
6. Strogonov K. V., Lvov D. D., Borisov A. A. Iron reduction unit. Patent RF, No. 2815145. Applied: 28.06.2023. Published: 11.03.2024. Bulletin No. 8.
7. Horvath A., Jordan C., Lukasser M., Kuttner C. et al. CFD simulation of bubble columns using the VOF model: Comparison of commercial and open source solvers with an experiment. Chemical Engineering Transactions. 2009. Vol. 18. pp. 605–610. DOI: 10.3303/CET0918098
8. Bertola F., Vanni M., Baldi G. Application of computational fluid dynamics to multiphase flow in bubble columns. International Journal of Chemical Reactor Engineering. 2003. Vol. 1, No. 1. DOI: 10.2202/1542-6580.1002
9. Besagni G., Varallo N., Mereu R. computational fluid dynamics modeling of two-phase bubble columns: A comprehensive review. Fluids. 2023. Vol. 8, No. 3. 91. DOI: 10.3390/fluids8030091
10. Akhtar A., Pareek V., Tadé M. CFD simulations for continuous flow of bubbles through gasliquid columns: Application of VOF method. Chemical Product and Process Modeling. 2007. Vol. 2, No. 1. DOI: 10.2202/1934-2659.1011
11. Strogonov K. V., Petelin A. L., Terekhova A. Yu., Lvov D. D. et al. Liquid-phase reduction of iron ores with a carbon-hydrogen mixture and hydrogen. Promyshlennaya energetika. 2023. No. 8. pp. 43–49.
12. Strogonov K. V., Burmakina A. V., Lvov D. D., Bastynets A. K. et al. Mathematical modeling of the perforated hearth of a continuous steelmaking unit. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2024. Vol. 335. No. 12. pp. 59–71
13. Okajima R., Mitchell T. R., Leonardi C. R., Smart S. Hydrodynamics of molten media bubble columns for hydrogen production through methane pyrolysis. Physics of Fluids. 2024. Vol. 36, No. 10. 103347. DOI: 10.1063/5.0227299
14. Hao Cai, Zhen Liang, Yingying Lyu, Yinuo Qin. Numerical simulation analysis of large-scale three-dimensional planting greenhouse based on orthogonal test method. Journal of Applied Mathematics and Physics. 2025. Vol. 13, No. 3. DOI: 10.4236/jamp.2025.133048
15. Kashcheev I. D. Properties and application of refractories. Moscow : Teplotekhnik, 2004. 352 p.
16. Gupta P., Chen J., Al-Dahhan M. H. Progress in understanding the fluid dynamics of bubble column reactors. Chemical Engineering Science. 1997. pp. 1-7.
17. The Romelt process. Edited by V. A. Romenets. Moscow : Izdatelskiy dom “Ruda i Metally“, 2005. 400 p.
18. Iguchi M., Kawabata H., Morita Z., Nakajima K. et al. Continuous measurements of bubble characteristics in a molten iron bath with Ar gas bubbling. Tetsu-to-Hagane. 1994. Vol. 80, No. 5. pp. 365–370. DOI: 10.2355/tetsutohagane1955.80.5_365

Language of full-text русский
Полный текст статьи Получить
Назад