Journals →  Non-ferrous Metals →  2025 →  #1 →  Back

MATERIALS SCIENCE
ArticleName First principles modelling of the elastic properties of CoCrFexMn(40 – x)Ni alloys
DOI 10.17580/nfm.2025.01.10
ArticleAuthor Osintsev K. A., Panova V. S., Konovalov S. V., Panchenko I. A.
ArticleAuthorData

Institute of Laser and Optoelectronics Intelligent Manufacturing, Wenzhou University, Wenzhou, China

K. A. Osintsev, PhD in Engineering, Postdoctoral Researcher, e-mail: kirosintsev@gmail.com

 

Siberian State Industrial University, Novokuznetsk, Russia
V. S. Panova, Junior Researcher, e-mail: panova_vs@sibsiu.ru
S. V. Konovalov*, Professor, Doctor of Technical Sciences, Vice-Rector for Research and Innovation, e-mail: konovalov@sibsiu.ru
I. A. Panchenko, Candidate of Technical Sciences, Head of the Laboratory of Electron Microscopy and Image Processing, e-mail: i.r.i.ss@yandex.ru

 

*Correspondence author.

Abstract

In this paper the elastic properties of CoCrFexMn(40 – x)Ni alloys (x = 5, 10, 15, 20, 25, 30, 35 at.%) were studied using the virtual crystal approximation (VCA) method in the Quantum Espresso software at 0 K temperature. The aim of the study was to determine the applicability of this method to high entropy alloys of the Co – Cr – Fe – Mn – Ni system and to investigate the influence of Fe and Mn content on lattice parameters and elastic properties. The results showed that the lattice parameters calculated by the VCA method were on average 4% lower than those of the cast samples obtained by XRD analysis. The method showed a tendency for the lattice parameter to decrease with increasing Fe content and decreasing Mn from 3.458 A to 3.450 A (0.3% decrease), which is in agreement with the experimental data. However, the calculated values of Young’s modulus exceed the experimental values by an average factor of two, indicating that the accuracy of the method for estimating the absolute values of elastic moduli is insufficient. The Young’s modulus calculated by the VCA method decreases from 457 GPa to 431 GPa as the Mn content increases and the Fe content decreases. However, experimental findings reveal a more intricate behaviour of the elastic modulus variation, with maximum values attained in alloys containing 35 and 5 at.% Fe, and minimum values observed in alloys approaching equiatomic concentration. Consequently, the VCA method enables the estimation of the direction of change in lattice parameters and elastic properties; however, it is limited in determining their absolute values.

The present study was supported by a grant from the Russian Science Foundation (RSF), grant No. 23-49-00015 (https://rscf.ru/project/23-49-00015/). The authors would like to express their gratitude to Valentina Kuznetsova for her analysis of pseudopotentials and to Vladislav Drobyshev for his assistance with sample preparation and measurement of the elastic modulus of alloys.

keywords Density functional theory, virtual crystal approximation, elastic properties, high-entropy alloy, elastic constants
References

1. Miracle D. B., Senkov O. N. A Critical Review of High Entropy Alloys and Related Concepts. Acta Materialia. 2017. Vol. 122. pp. 448–511.

2. Ouyang G., Singh P., Su R., Johnson D. D., Kramer M. J., Perepezko J. H., Senkov O. N., Miracle D., Cui J. Design of Refractory Multi-Principal-Element Alloys for High-Temperature Applications. npj Computational Materials. 2023. Vol. 9. 141.
3. Cantor B., Chang I. T. H., Knight P., Vincent A. J. B. Microstructural Development in Equiatomic Multicomponent Alloys. Materials Science and Engineering: A. 2004. Vol. 375-377. pp. 213–218.
4. Otto F., Dlouhý A., Somsen Ch., Bei H., Eggeler G., George E. P. The Influences of Temperature and Microstructure on the Tensile Properties of a CoCrFeMnNi High-Entropy Alloy. Acta Materialia. 2013. Vol. 61, Iss. 15. pp. 5743–5755.
5. Huang C.-W., Su P.-Y., Yu C.-H., Wang C.-L., Lo Y.-C., Jang J. S.-C., Hu H.-T. A Micromechanical Study on the Effects of Precipitation on the Mechanical Properties of CoCrFeMnNi High Entropy Alloys with Various Annealing Temperatures. Scientific Reports. 2023. Vol. 13. 3379.
6. Giustino F. Materials Modelling Using Density Functional Theory: Properties and Predictions. Oxford: Oxford University Press, 2014. 286 p.
7. Zunger A., Wei S.-H., Ferreira L. G., Bernard J. E. Special Quasirandom Structures. Physical Review Letters. 1990. Vol. 65, Iss 3. pp. 353–356.
8. Ferrari A., Körmann F., Asta M., Neugebauer J. Simulating Short-Range Order in Compositionally Complex Materials. Nature Computational Science. 2023. Vol. 3. pp. 221–229.
9. Abrikosov I. A., Nikonov A. Yu., Ponomareva A. V., Dmitriev A. I., Barannikova S. A. The Application of Method of Exact MT-Orbitals for Modelling of Thermodynamic and Mechanical Properties in Pure Components of Ti- and Zr-Based Alloys. Uspehi Fiziki Metallov. 2013. Vol. 14, Iss. 4. pp. 319–352.
10. Xiao H., Liu Y., Wang K., Wang Z., Hu T., Fan T., Ma L., Tang P. Effects of Mn Content on Mechanical Properties of FeCoCrNiMnx (0 ≤ x ≤ 0.3) High-Entropy Alloys: a First-Principles Study. Acta Metallurgica Sinica (English Letters). 2021. Vol. 34, Iss. 4. pp. 455–464.
11. Orhan O. K., Isiet M., Caparini L., Ponga M. Exploring the Compositional Space of High-Entropy Alloys for Cost-Effective High-Temperature Applications. Frontiers in Materials. 2022. Vol. 8. 816610.
12. Wang S., Xiong J., Li D., Zeng Q., Xiong M., Chai X. Comparison of Two Calculation Models for High Entropy Alloys: Virtual Crystal Approximation and Special Quasi-Random Structure. Materials Letters. 2021. Vol. 282. 128754.
13. Giannozzi P., Baroni S., Bonini N., Calandra M. et al. QUANTUM ESPRESSO: a Modular and Open-Source Software Project for Quantum Simulations of Materials. Journal of Physics: Condensed Matter. 2009. Vol. 21, Iss. 39. 395502.
14. Zaddach A. J., Niu C., Koch C. C., Irving D. L. Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy. JOM. 2013. Vol. 65, Iss. 12. pp. 1780–1789.
15. Hamann D. R. Optimized Norm-Conserving Vanderbilt Pseudopotentials. Physical Review B. 2013. Vol. 88, Iss. 8. 085117.
16. Golesorkhtabar R., Pavone P., Spitaler J., Puschnig P., Draxl C. ElaStic: a Tool for Calculating Second-Order Elastic Constants from First Principles. Computer Physics Communications. 2013. Vol. 184, Iss. 8. pp. 1861–1873.

17. Otero-de-la-Roza A., Luaña V. Gibbs2: A New Version of the Quasi-Harmonic Model Code. I. Robust Treatment of the Static Data. Computer Physics Communications. 2011. Vol. 182, Iss. 8. pp. 1708–1720.
18. Otero-de-la-Roza A., Abbasi-Pérez D., Luaña V. Gibbs2: A New Version of the Quasiharmonic Model Code. II. Models for Solid-State Thermodynamics, Features and Implementation. Computer Physics Communications. 2011. Vol. 182, Iss. 10. pp. 2232–2248.
19. Birch F. Finite Strain Isotherm and Velocities for Single-Crystal and Polycrystalline NaCl at High Pressures and 300 °K. Journal of Geophysical Research. 1978. Vol. 83, Iss. B3. pp. 1257–1268.
20. Erba A., Mahmoud A., Belmonte D., Dovesi R. High Pressure Elastic Properties of Minerals from ab initio Simulations: the Case of Pyrope, Grossular and Andradite Silicate Garnets. The Journal of Chemical Physics. 2014. Vol. 140, Iss. 12. 124703.
21. Nielsen O. H., Martin R. M. Stresses in Semiconductors: ab initio Calculations on Si, Ge, and GaAs. Physical Review B. 1985. Vol. 32, Iss. 6. pp. 3792–3805.
22. Hill R. The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A. 1952. Vol. 65, Iss. 5. pp. 349–354.
23. Voigt W. Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik). Vieweg+Teubner Verlag, Leipzig, 1928. 979 p.
24. Reuss A. Calculation of the Flow Limits of Mixed Crystals on the Basis of the Plasticity of Monocrystals. Zeitschrift für Angewandte Mathematik und Mechanik. 1929. Iss. 9. pp. 49–58.
25. Xing W., Wei Z., Yu R., Meng F. Prediction of Stable High-Pressure Structures of Tantalum Nitride TaN2. Journal of Materials Science & Technology. 2019. Vol. 35, Iss. 10. pp. 2297–2304.
26. Zener C. M. Elasticity and Anelasticity of Metals. Chicago: University of Chicago Press, 1948. 170 p.
27. Wu Z., Bei H., Pharr G. M., George E. P. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with Face-Centered Cubic Crystal Structures. Acta Materialia. 2014. Vol. 81, Iss. 7. pp. 428–441.
28. Osintsev K. A., Panova V. S., Kuznetsova V. A., Konovalov S. V., Panchenko I. A. First-Principles Study of the Stability of CoCrFe40 – xMnxNi (x = 5, 10, 15, 20) High-Entropy Alloys. Basic Problems of Material Science. 2023. Vol. 20, Iss. 4. pp. 508–514.
29. Laplanche G., Gadaud P., Horst O., Otto F., Eggeler G., George E. P. Temperature Dependencies of the Elastic Moduli and Thermal Expansion Coefficient of an Equiatomic, Single-Phase CoCrFeMnNi High-Entropy Alloy. Journal of Alloys and Compounds. 2015. Vol. 623. pp. 348–353.
30. Klochikhin A. A., Davydov V. Yu., Seel’ E. R. Compositional Fluctuations in Isotopic Solid Solutions. Physics of the Solid State. 2007. Vol. 49, Iss. 1. pp. 46–54.
31. Wu Z.-J., Zhao E.-J., Xiang H.-P., Hao X.-F., Liu X.-J., Meng J. Crystal Structures and Elastic Properties of Superhard IrN2 and IrN3 from First Principles. Physical Review B. 2007. Vol. 76, Iss. 5. 059904.
32. Korabel’nikov D. V., Zhuravlev Y. N. Ab Initio Investigations of the Elastic Properties of Chlorates and Perchlorates. Physics of the Solid State. 2016. Vol. 58, Iss. 6. pp. 1166–1171.
33. Liu H., Xin C., Liu L., Zhuang C. Effects of Different Contents of Each Component on the Structural Stability and Mechanical Properties of Co – Cr – Fe – Ni High-Entropy Alloys. Applied Sciences. 2021. Vol. 11, Iss. 6. 2832.
34. Boucetta S. Theoretical Study of Elastic, Mechanical and Thermodynamic Properties of MgRh Intermetallic Compound. Journal of Magnesium and Alloys. 2014. Vol. 2, Iss. 1. pp. 59–63.
35. Tian F., Varga L. K., Shen J., Vitos L. Calculating Elastic Constants in High-Entropy Alloys Using the Coherent Potential Approximation: Current Issues and Errors. Computational Materials Science. 2016. Vol. 111. pp. 350–358.

Full content First principles modelling of the elastic properties of CoCrFexMn(40 – x)Ni alloys
Back