Journals →  Non-ferrous Metals →  2025 →  #1 →  Back

MATERIALS SCIENCE
ArticleName Multicomponent aluminum composites Al – Cr – Zr, Al – Cr – Zr – Co – Ti – Cu with small additions of nanoparticles of refractory compounds SiC or MgAl2O4: thermochemistry, structure and properties
DOI 10.17580/nfm.2025.01.03
ArticleAuthor Agureev L. E., Savushkina S. V., Belov G. V., Lyakhovetsky M. A.
ArticleAuthorData

Moscow Aviation Institute, Moscow, Russia1 ; Keldysh Research Center, Moscow, Russia2

L. E. Agureev, Candidate of Technical Sciences, Leading Researcher at the Nanotechnology Department1,2, e-mail: trynano@gmail.com
S. V. Savushkina, Doctor of Technical Sciences, Professor, Researcher at the Nanotechnology Department1,2

 

Bauman Moscow State Technical University, Moscow, Russia
G. V. Belov, Doctor of Technical Sciences, Leading Researcher

 

Moscow Aviation Institute, Moscow, Russia
M. A. Lyakhovetsky, Candidate of Technical Sciences, Associate Professor, Leading Researcher, e-mail: maxim.lyakhovetskiy@mai.ru

Abstract

The ability to increase the operating temperature of powder aluminum matrix composites by introducing alloying metals (Zr, Cr, Co, Ti, and Cu) and nanoparticles of refractory substances has been studied. The equilibrium composition of the Al – Cr – Zr – Co – Ti – Cu system has been calculated using contemporary modeling techniques for equilibrium processes (jmatro® and HSC®). Calculations indicate the presence of Al, Al3M (D023), Al7Cr, Al7Cu2M, and Al9M2 phases in aluminum at the sintering temperature, where M is an additive metal. Gibbs energies and equilibrium constants for the formation of intermetallic compounds have been calculated. The intensification of the solid-phase reaction between aluminium and silicon carbide is contingent upon the presence of free carbon within the system Al – Cr – Zr – Co – Ti – Cu evidenced by calculations of the Gibbs energy and equilibrium constant. An aluminum composite Al – Cr – Zr – Co – Ti – Cu modified with SiC and MgAl2O4 nanoparticles has been produced through mechanical alloying, hydrostatic pressing, and spark plasma sintering. The next materials were prepared: Al – 0.5%Cr – 0.3%Zr, Al – 0.5%Cr – 0.3%Zr + 0.1% SiC, Al – 0.5%Cr – 0.3%Zr + 0.1 MgAl2O4, Al – 0.5%Cr – 0.25%Zr – 0.2%Co – 0.2%Ti – 0.2%Cu, Al – 0.5%Cr – 0.25 Zr – 0.2%Co – 0.2%Ti – 0.2%Cu + 0.1%SiC, Al – 0.5%Cr – 0.25%Zr – 0.2%Co – 0.2%Ti – 0.2%Cu + 0.1%MgAl2O4. The microstructure of the samples was analyzed. It was found that the segmentation effect, in which a large inclusion splits into smaller grains, is linked to the formation of intermetallic compounds with different crystalline structures, compositions and stoichiometry. The bending strength and Young’s modulus at different temperatures for Al – Cr – Zr and Al – Cr – Zr – Co – Ti – Cu materials, as well as those modified with aluminum-magnesium spinel and silicon carbide nanoparticles, were measured. The material exhibits high bending strength at 400 °C (up to 191 MPa).

This research was funded by the Ministry of Science and Higher Education of the Russian Federation in the framework of the “Goszadanie”, grant number FSFF-2023–0006.
The authors would like to acknowledge the support received by the employees of the Department of Nanotechnology of JSC “Keldysh Research Center” for assistance in the research and valuable advice.

keywords Aluminum composites, nanoparticles, spark plasma sintering, thermodynamic modelling, bending strength, Young’s modulus
References

1. Prosviryakov A. S., Bazlov A. I., Bazlov A. I., Kishchik M. S., Mikhaylovskaya A. V. Microstructure and Mechanical Properties of Al – Cu – Mn Alloy Mechanically Alloyed with 5 wt% Zr After Multi-Directional Forging. Metals and Materials International. 2024. DOI: 10.1007/s12540-024-01800-y
2. Agureev L. E., Savushkina S. V., Laptev I. N., Ivanov A. V. Structure and Properties of Sintered Al – Cr – Zr Alloy. Journal of Physics: Conference Series. 2019. Vol. 1396. 012001.
3. Brodova I. G., Shirinkina I. G., Antonova O. V. Phase and Structural Transformations in the Al – Cr – Zr Alloy After  Rapid Melt Quenching and High-Pressure Torsion. The Physics of Metals and Metallography. 2007. Vol. 104, Iss. 3. pp. 281– 288.

4. Sytschev A. E., Lazarev P. A., Bogatov Yu. V., Boyarchenko O. A Study of the Structure and Properties of a Ti –Al – Mg/Ti-Based Metal–Intermetallic Material Produced by Self-Propagating High-Temperature Synthesis Combined with Pressing. Inorganic Materials: Applied Research. 2024. Vol. 5. pp. 1421–1428.
5. Nikolaev A., Ramazanov K., Nazarov A., Mukhamadeev V., Zagibalova E., Astafurova E. TEM Study of a Layered Composite Structure Produced by Ion-Plasma Treatment of Aluminum Coating on the Ti – 6Al – 4V Alloy. Journal of Composites Science. 2023. Vol. 7, Iss. 7. 271.
6. Popova E. A., Kotenkov P. V., Gilev I. O. Manifestation of Isomorphism in the Formation of Aluminides in Al Alloys with Two Transition Metals. Inorganic Materials. 2021. Vol. 57, Iss. 3. pp. 241–248.
7. Belov N. A. Phase Composition of Industrial and Advanced Aluminum Alloys. Moscow: Izdatelskiy dom “MISiS”, 2010. 511p.
8. Muradyan G. N., Dolukhanyan S. K., Aleksanyan A. G., Ter-Galstyan O. P., Mnatsakanyan N. L. Regularities and Mechanism of Formation of Aluminides in the TiH2– ZrH2 – Al System. Russian Journal of Physical Chemistry B. 2019. Vol. 13, Iss. 1, pp. 86–95.
9. Popova E., Kotenkov P., Shubin A., Gilev I. Formation of Metastable Aluminides in Al – Sc – Ti (Zr, Hf) Cast Alloys. Metals and Materials International. 2020. Vol. 26. pp. 1515–1523.
10. Kotenkov P. V., Popova E. A., Gilev I. O. Influence of Small Additions of Ti and Zi on the Structure and Properties of the Al – 4%Cu Alloy. Himicheskaya Fizika i Mezoskopiya. 2019. Vol. 21, Iss. 1. pp. 23–28.
11. Tsunekawa S., Fine M. E. Lattice Parameters of Al3(Zrx r Ti 1–x ) vs. x in Al – 2at.%(Ti + Zr) Alloys. Scripta Metallurgica. 1982. Vol. 16, Iss. 4. pp. 391–392.
12. Parameswaran V. R., Weertman J. R., Fine M. E. Coarsening Behavior of L12 Phase in an Al – Zr – Ti Alloy. Scripta Metallurgica. 1989. 23. pp. 147–150.
13. Lekatou A. G., Sfikas A. K., Karantzalis A. E. The Influence of the Fabrication Route on the Microstructure and Surface Degradation Properties of Al Reinforced by Al9Co2. Materials Chemistry and Physics. 2017. Vol. 200. pp. 33–49.
14. Deng Z.-X., Zhao D.-P., Huang Y.-Y., Chen L.-L., Zou H., Jiang Y., Chang K. Ab initio and CALPHAD-Type Thermodynamic Investigation of the Ti – Al – Zr System. Journal of Mining and Metallurgy, Section B: Metallurgy. 2019. Vol. 55, Iss. 3. pp. 427–437.
15. Boyer R., Welsch G., Collings E. W. Materials Properties Handbook: Titanium Alloys. ASM International, 1994. 1176 p.
16. Imayev V. M., Imayev R. M., Oleneva T. I. Current Status of γ-TiAl Intermetallic Alloys Investigations and Prospects for the Technology Developments. Letters on Materials. 2011. Vol. 1, Iss. 1. pp. 25–31.
17. Advanced Light Alloys and Composites. Ed. by R. Ciach. NATO Science Partnership Subseries: 3, 59. 1998. 534 p.
18. Mihalkovič M., Widom M. First-Principles Calculations of Cohesive Energies in the Al – Co Binary Alloy System. Physical Review B. 2007. Vol.75, Iss. 1. 014207.
19. Aubakirova R. K., Mansurov Yu. N., Sukurov B. M., Ibraeva G. M. Multilayer Structure of Intermetallic Compounds in the Diffusion Zone of the Al – Co System. Kompleksnoe Ispol’zovanie Mineral’nogo Syr’ya. 2018. No. 1. pp. 59–64.
20. Elagin V. I. Ways of Developing High-Strength and High-Temperature Structural Aluminum Alloys in the 21st Century. Metal Science and Heat Treatment. 2007. Vol. 49, Iss. 9-10, pp. 427–434.
21. Gobalakrishnan B., Rajaravi C., Udhayakumar G., Lakshminarayanan P. R. A Comparative Study on Ex-Situ & In-Situ Formed Metal Matrix Composites. Archives of Metallurgy and Materials. 2023. Vol. 68, Iss. 1. pp. 171–185.
22. Mironov V. V., Agureev L. E., Eremeeva Z. V., Kostikov V. I. Effect of Small Additions of Alumina Nanoparticles on the Strength Characteristics of an Aluminum Material. Doklady Physical Chemistry. 2018. Vol. 481, Iss. 2. pp. 110–113.
23. Lurie S., Volkov-Bogorodskiy D., Solyaev Y., Rizahanov R., Agureev L. Multiscale Modelling of Aluminium-Based Metal-Matrix Composites with Oxide Nanoinclusions. Computational Materials Science. 2016. Vol. 116. pp. 62–73.
24. Saunders N., Guo U. K. Z., Li X., Miodownik A. P., Schillé J.-P. Using JMatPro to Model Materials Properties and Behavior. JOM. 2003. Vol. 55, Iss. 12. pp. 60–65.
25. Belov G. V., Trusov B. G. Thermodynamic Modeling of Chemically Reacting Systems: Moscow: Bauman Moscow State Technical University, 2013. 96 p.
26. Foadian F., Soltanieh M., Adeli M., Etminanbakhsh M. A Study on the Formation of Intermetallics During the Heat Treatment of Explosively Welded Al – Ti Multilayers. Metallurgical and Materials Transactions A. 2014. Vol. 45. pp. 1823– 1832.
27. Zhang C.-L., Wang X.-J., Wang X.-M., Hu X.-S., Wu K. Fabrication, Microstructure and Mechanical Properties of Mg Matrix Composites Reinforced by High Volume Fraction of Sphere TC4 Particles. Journal of Magnesium and Alloys. 2016. Vol. 4, Iss. 4. pp. 286–294.
28. Leszczyńska-Madej B., Garbiec D., Madej M. Effect of Sintering Temperature on Microstructure and Selected Properties of Spark Plasma Sintered Al – SiC composites. Vacuum. 2019. Vol. 164. pp. 250–255.
29. Sergeenko S. N., Alabid N. S. Hot-Deformed Powder Materials Based on Mechanochemically Activated Charges Al – SiC. Tsvetnye Metally. 2016. No. 9. pp. 68–77.
30. Kurbatkina E. I., Kosolapov D. V., Gololobov A. V., Shavnev A. A. Study on the Structure and Properties of Al – Zn – Mg – Cu/SiC Composite. Tsvetnye Metally. 2019. No. 1. pp. 40–45.
31. Urena A., Escalera M., Gil L. Oxidation Barriers on SiC Particles for Use in Aluminium Matrix Composites Manufactu red by Casting Route: Mechanisms of Interfacial Protection. Journal of Materials Science. 2002. Vol. 37. pp. 4633–4643.
32. Baker A. G. Study of Mechanical and Physical Properties for SiC/Al Composites. International Journal of Advances in Applied Science. 2013. Vol. 2, Iss. 2. pp. 67–72.

33. Abedi M., Moskovskikh D., Nepapushev A., Suvorova V., Wang H., Romanovski V. Advancements in Laser Powder Bed Fusion of Carbon Nanotubes-Reinforced AlSi10Mg Alloy: A Comprehensive Analysis of Microstructure Evolution, Properties, and Future Prospects. Metals. 2023. Vol. 13. 1619.
34. Agureev L. E., Kostikov V. I., Yeremeyeva Z. V., Barmin A. A., Rizakhanov R. N., Ivanov B. S., Ashmarin A. A., Laptev I. N., Rudshteyn R. I. Powder Aluminum Composites of Al – Cu System with Micro-Additions of Pxide Nanoparticles. Inorganic Materials: Applied Research. 2016. Vol. 7, Iss. 5. pp. 687–690.
35. Agureev L. E., Laptev I. N., Ivanov B. S. et al. Development of Heat Resistant Aluminum Composite with Minor Addition of Alumina Nanofibers (Nafen™). Inorganic Materials: Applied Research. 2020. Vol. 11. pp. 1045–1050.
36. Poovazhagan L., Kalaichelvan K., Rajadurai A., Senthilvelan V. Characterization of Hybrid Silicon Carbide and Boron Carbide Nanoparticles-Reinforced Aluminum Alloy Composites. Procedia Engineering. 2013. Vol. 64. pp. 681–689.
37. Podrabinnik P., Gershman I., Mironov A., Kuznetsova E., Peretyagin P. Tribochemical Interaction of Multicomponent Aluminum Alloys During Sliding Friction with Steel. Lubricants. 2020. Vol. 8, Iss. 3. 24.
38. Monchoux J.-P. Sintering Mechanisms of Metals Under Electric Currents. Spark Plasma Sintering of Materials. 2019. pp. 93–115.
39. Dudina D. V., Georgarakis K., Olevsky E. A. Progress in Aluminium and Magnesium Matrix Composites Obtained by Spark Plasma, Microwave and Induction Sintering. International Materials Review. 2023. Vol. 68, Iss. 2. pp. 225–246.
40. Shkodich N. F., Rogachev A. S., Mukasyan A. S., Moskovskikh D. O., Kuskov K. V., Schukin A. S., Khomenko N. Y. Preparation of Copper–Molybdenum Nanocrystalline Pseudoalloys Using a Combination of Mechanical Activation and Spark Plasma Sintering Techniques. Russian Journal of Physical Chemistry B. 2017. Vol. 11, Iss. 1. pp. 173–179.

Full content Multicomponent aluminum composites Al – Cr – Zr, Al – Cr – Zr – Co – Ti – Cu with small additions of nanoparticles of refractory compounds SiC or MgAl2O4: thermochemistry, structure and properties
Back