Journals →  Chernye Metally →  2025 →  #5 →  Back

Foundry Production
ArticleName Terminology in the field of production and application of melt modifiers
DOI 10.17580/chm.2025.05.04
ArticleAuthor V. A. Ivanova, A. G. Panov
ArticleAuthorData

Yaroslavl State Technical University, Yaroslavl, Russia

V. A. Ivanova, Dr. Eng., Associate Prof., Director of the Institute of Engineering and Mechanical Engineering, e-mail: ivanovava@ystu.ru

 

Naberezhnye Chelny Institute (branch) of the Federal State Autonomous Educational Institution of Higher Education “Kazan (Volga Region) Federal University”, Naberezhnye Chelny, Russia
A. G. Panov, Dr. Eng., Associate Prof., e-mail: panov.ag@mail.ru

Abstract

The research develops and standardises terminology and definitions in terms of melt inoculant: “inoculant“, “molten metal“ / “melt“ / “liquid metal“, “modifying“, “heredity“, “hereditary properties“, “modifying ability“. The research presents those standard terms considering their relations and connections. To justify the development of a required minimum quantity of terms and definitions concerning melt inoculant, the paper considers the stages of their life cycle: design; production; packaging and storage; supply and transportation; consumer (retailer) storage; application; utilisation. Standardisation of terminology will allow ones to continue classification, systematisation, and regulation of requirements for accompanying documentation and quality in melt inoculant supply.

keywords Melt inoculant, modifying, terminology, heredity, hereditary properties
References

1. Trofimov N. V., Tokarev M. S., Mukhina I. Yu., Uridiya Z. P. Trends in the development of modern technologies for modifying magnesium alloys of the Mg-Al-Zn-Mn system. Legkie splavy. 2024. No. 1 (131). pp. 27–34.
2. Ragazin A. A., Aryshenskiy V. Yu., Konovalov S. V. et al. Study of the influence of hafnium and erbium content on the formation of microstructure during casting of aluminum alloy 1590 in a copper chill mold. Obrabotka metallov (Tekhnologiya. Oborudovanie. Instrument). 2024. Vol. 26. No. 1. pp. 99–112.
3. Bykov P. O., Tusupbekova M. Zh., Absolyamov D. R. et al. Modification of steel with bariumcontaining modifiers. Nauka i tekhnika Kazakhstana. 2022. No. 2. pp. 73–80.
4. Kandarov I. V., Pankratov D. P., Piksaev V. M. et al. Obtaining a fine-grained structure of largesized blades from heat-resistant nickel alloy IN792. Vestnik PNIPU. Mashinostroenie, materialovedenie. 2022. Vol. 24. No. 3. pp. 64–70.
5. Malkova M. Yu., Zadiranov A. N., Gerasimova I. N. et al. Modification of copper alloys with ultrafine powders. Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Inzhenernye issledovaniya. 2022. Vol. 23. No. 1. pp. 57–64.
6. Panov A. G., Zakirov E. S. Development of a heavy modifier of cast iron for vermicular graphite. Polzunovskiy vestnik. 2022. No. 4 (2). pp. 93–98.
7. Šuc A., Klančnik U., Košec B. Auswirkung der Zugabe von Inokulaten auf Cer-Basis auf die Entwicklung des Mikrogefüges und der mechanischen Eigenschaften von schleudergegossenem Schnellarbeitsstahl. Berg Huettenmaenn Monatsh. 2024. Vol. 169. S. 592–598.
8. Korovaytsev A. A., Sakov A. A., Slepyntseva L. I. All-Russian classifiers: yesterday, today, tomorrow. Kontrol kachestva produktsii. 2014. No. 3. pp. 49–54.
9. Voloshkina V. I., Goncharova Yu. L. Specifics of translation of terms from English into Russian in the field of metallurgy and welding production. Filologicheskie nauki. Voprosy teorii i praktiki. 2017. No. 5 (71). pp. 71–74.
10. Glushkova N. M., Kharchenko M. G. On the development of digital economy terminology in modern English. Filologicheskie nauki v MGIMO. 2020. No. 2 (22). pp. 15–23.
11. Shkarina T. Yu., Boltrina A. A. Conceptual apparatus of the life cycle of a testing laboratory. Kontrol kachestva produktsii. 2019. No. 11. pp. 8–13.
12. Catalogue of the National Standards. Available at: https://www.rst.gov.ru/portal/gost/home/standarts/catalognational (accessed: 14.04.2025).
13. GOST R ISO 704-2010. Terminology work. Principles and methods. Introduced: 01.09.2011.
14. Report of Technical Committee 66 on Standardization “Pipeline Valves and Bellows” (TC 259) for 2018. Truboprovodnaya armatura. 2017. No. 2(95). pp. 66–67.
15. Khankevich A. G., Kondratenko I. P. On the work of the technical committee for standardization “Intellectual Property” (TC 481) in 2014. Pravo intellektualnoy sobstvennosti. 2015. No. 1. pp. 39–45.
16. Belokobylskiy A. V., Novikova A. V., Grigorieva E. M., Kokhonovich A. N. Problems of technical regulation, standardization and activities of technical committees for standardization in the field of fire safety. Pozharnaya bezopasnost. 2022. No. 2 (107). pp. 122–126.
17. Ivanova V. A., Panov A. G. Tasks of standardization of melt modifiers. Standarty i kachestvo. 2021. No. 4. pp. 58–60.
18. GOST R 2.005–2023. Unified system of design documentation. Terms and definitions. Introduced: 01.03.2024.
19. GOST 18169–86. Foundry technological processes. Terms and definitions. Introduced: 01.07.1987.
20. GOST R 59129–2020. Non-ferrous metals. Terms and definitions. Introduced: 01.07.2021.
21. GOST 3.1109–86. Terms and definitions of main concepts. Introduced: 01.01.1983.
22. Panov A. G., Mukhamtzyanov G. F. On the structure of cast iron melts. Metallurgiya mashinostroeniya. 2014. No. 5. pp. 6–13.
23. Panov A. G., Tsepelev V. S., Konashkov V. V. Study of the possibility of improving the quality of centrifugal cast iron billets by treating melts with alkaline earth metals. Izvestiya vuzov. Chernaya metallurgiya. 2016. No. 1. pp. 43–48.
24. Marukovich E. I., Stetsenko V. Yu. Structural heredity in casting eutectic cast irons. Lityo i metallurgiya. 2024. No. 3. pp. 41–44.
25. Pisarenko L. Z., Khatskevich V. A. Solution of the problems of heredity of smelted cast iron. Lityo i metallurgiya. 2005. No. 2. pp. 85–87.
26. Rakovets A. S., Kuis D. V., Svidunovich N. A., Lezhnev S. N. Influence of nanocarbon additives in the composition of complex modifiers on the structure and properties of high-strength cast iron. Trudy BGTU. Seriya 1: Lesnoe khozyaystvo, prirodopolzovanie i pererabotka vozobnovlyaemykh resursov. 2020. No. 2. pp. 330–335.
27. Yarkov V. Yu., Pastukhov V. I., Averin S. A. et al. Structural and textural heredity in the Zr-2.5 Nb alloy. Metallovedenie i termicheskaya obrabotka metallov. 2022. No. 7 (805). pp. 47–52.
28. Krayushkina V. A. Structural heredity of steel. Basic concepts. Studencheskiy vestnik. 2019. No. 32-2 (82). pp. 55–56.
29. Baurova N. I., Konoplin A. Yu. Technological heredity and models of its visualization. Tekhnologiya metallov. 2020. No. 1. pp. 38–42.
30. Toirzhonov O. Z., Malyshev E. N. Technological heredity. Mekhaniki XXI veku. 2022. No. 21. pp. 162–166.
31. Prudnikov A. N. Structural heredity of the charge in silumins. Tekhnologiya metallov. 2014. No. 3. pp. 16–22.
32. Lobanov V. L., Pyshmintsev I. Yu., Urtsev V. N. et al. Textural heredity in the ferrite-martensite structure of low-alloy steel after controlled thermomechanical treatment. Fizika metallov i metallovedenie. 2019. Vol. 120. No. 12. pp. 1279–1285.
33. Guo Y., Jia L., Lu W. Morphological Heredity of Intermetallic Nb5Si3 Dendrites in Hypereutectic Nb-Si Based Alloys via Non-Equilibrium Solidification. Chinese Journal of Mechanical Engineering. 2022. Vol. 35. S. 84.

Language of full-text russian
Full content Buy
Back