Abstract |
This study investigates the acid leaching process for the extraction of magnesium from saponite clay, a by-product of diamond enrichment at the Lomonosov deposit. Saponite, a member of the smectite (montmorillonite) group, is a clay mineral known for its natural filtration and ion exchange properties. Its chemical composition is generally expressed as (Ca, Na)03(Mg, Fe)3(Si, Al)4O10(OH)2·4H2O. The crystals represent aluminum-oxygen layers interleaved with siliconoxygen layers in an octahedral arrangement. Saponite is identified as a magnesian analogue of smectite, containing approximately 33 % by weight of magnesium in terms of its oxide. In the structure of saponite, magnesium occupies the interlayer space as an exchangeable cation. The acid leaching process for magnesium extraction from saponite involves sequential treatment of the ore with hydrochloric acid at varying concentrations. In the initial phase, 15 % hydrochloric acid was applied to the saponite clay at 110 °C, with stirring at 300 rpm for 25 minutes. The resulting suspension was then separated by filtration. Subsequently, 40 ml of ammonia (1 : 1) was added to the filtrate, stirred at 300 rpm for 20 minutes, and again separated by filtration. In the final stage, 0.1 M Na2HPO4 was added to the filtrate in a 1 : 2 ratio at 100 °C, with stirring at 300 rpm for 20 minutes, after which the suspension was filtered once more. Following the completionof the acid leaching process, a basic flowchart outlining the method for producing magnesium phosphate was developed. The overall yield of the target product, accounting for losses during the process, was found to be 82 %. |
References |
1. Gorlanov Е. S., Leontev L. I. Directions in the technological development of aluminium pots. Zapiski Gornogo Instituta. 2024. Vol. 266. pp. 246–259. 2. Popov G. G., Bolobov V. I., Oparina A. O., Latipov I. U., Sumin E. I. On the regularities of electrolytic hydrogenation of ARMCO iron. Chernye Metally. 2024. No. 9. pp. 55–62. 3. Pashkevich M. A., Kulikova Yu. A. Monitoring and assessment of the negative impact of technogenic massives of the mineral and raw complex. Gornyi Informatsionno-analiticheskiy Byulleten′. 2023. No. 9-1. pp. 231–247. 4. Pat. 2818698 Russian Federation. 5. Chen Y., Yang X., Wu L., Tong L., Zhu J. Recovery of Mg from H2SO4 leaching solution of serpentine to precipitation of high-purity Mg(OH)2 and 4MgCO3·Mg(OH)2·4H2O. Minerals. 2023. Vol. 13. DOI: 10.3390/min13030318 6. Bao T., Damtie M. M., Wang C. Y., Chen Z., Tao Q., Wei W., Cho K., Yuan P., Frost R. L., Ni B.-J. Comprehensive review of modified clay minerals for phosphate management and future prospects. Journal of Cleaner Production. 2024. Vol. 447. DOI: 10.1016/j.jclepro.2024.141425 7. Bernard E. Research progress on magnesium silicate hydrate phases and future opportunities. RILEM Technical Letters. 2022. Vol. 7. pp. 47–57. 8. Zdretsov I. M., Gerasimov A. M. Green and low-cost synthesis of zeolites from kaolin: a promising technology or a delusion? Reaction Chemistry & Engineering. 2024. Vol. 9, No. 8. pp. 1994–2027. 9. Perederin Yu. V., Usoltseva I. O., Krasnoshchekova D. V. Basic technologies for obtaining magnesium oxide from serpentinite. Polzunovskiy Vestnik. 2019. No. 2. pp. 123–127.
10. Aleksandrova T. N. Сomplex and deep processing of mineral raw materials of natural and technogenic origin: state and prospects. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 503–504. 11. Aizenshtadt A. M., Morozova M. V., Frolova M. A., Tyurin A. M. Study of the potential use of tailings from Severalmaz JSC for the production of mineral additives to cement binders. Obogashchenie Rud. 2024. No. 3. pp. 42–48. 12. Apollonov V. N., Verzhak V. V., Garanin K. V., Garanin V. K., Kudryavtseva G. P., Shlykov V. G. Saponite from the Lomonosov diamond deposit. Vestnik Moskovskogo Universiteta. Seriya 4: Geologiya. 2004. No. 2. pp. 64–73. 13. Garanin K. V., Garanin V. K., Kudryavtseva G. P. Petrochemistry and mineralogy of alkali-ultrabasic magmatites on the territory of Arkhangelsk diamond Province and formation models. Vestnik Permskogo Universiteta. Geologiya. 2008. No. 10. pp. 32–33. 14. Oblitsov A. Yu., Rogalev V. A. Prospective ways of diamondiferous rock enrichment wastes utilization at M. V. Lomonosov diamond deposit. Zapiski Gornogo Instituta. 2012. Vol. 195. pp. 163–167. 15. Orekhova T. N., Sivalneva M. N., Frolova M. A., Strokova V. V., Bondarenko D. O. The effect of mechanical and thermal treatment on the characteristics of saponitecontaining material. Zapiski Gornogo Instituta. 2024. EDN VZGFOR. 16. Feklichev V. G. Diagnostic spectra of minerals: A reference book. Moscow: Nedra, 1989. 479 p. 17. Rruff — Integrated database of Raman spectra, X-ray diffraction and chemistry data for minerals. URL: http://rruff.info/ (accessed: 01.07.2024). 18. Lupandina N. S., Sapronova Z. A. Modified bleaching clay as a sorption material. IOP Conference Series: Earth and Environmental Science. 2020. Vol. 459, Iss. 4. DOI: 10.1088/1755-1315/459/4/042063 19. Chanturiya V. А., Minenko V. G., Samusev А. L., Timofeev А. S., Ostrovskaya G. Kh. Electrochemical separation of JSC «Severalmaz» facilities saponite-containing tailings pulp. Obogashchenie Rud. 2014. No. 1. pp. 49–52. 20. Sizyakov V. M., Ivanik S. A., Fokina S. B. Finedispersed oxidized pulps thickening and filtration processes study. Obogashchenie Rud. 2012. No. 2. pp. 24–28. 21. Khan H., Aditya Sumanth Yerramilli, Adrien D'Oliveira, et al. Experimental methods in chemical engineering: X-ray diffraction spectroscopy—XRD. The Canadian Journal of Chemical Engineering. 2020. Vol. 98, Iss. 6. pp. 1255–1266. 22. Yeniyol M. Characterization of a Mg-rich and lowcharge saponite from the Neogene lacustrine basin of Eskisşehir, Turkey. Clay Minerals. 2007. Vol. 42, Iss. 4. pp. 541–548. 23. Kloprogge J. T., Ponce C. P. Spectroscopic studies of synthetic and natural saponites: A review. Minerals. 2021. Vol. 11. DOI: 10.20944/preprints202011.0312.v1 24. Umirov F. E., Pirnazarov F. G. Studying the composition of local raw material saponite mineral rich in magnesium oxide and recovering chloride-chlorate from it. The American Journal of Engineering and Technology. 2023. Vol. 5, Iss. 9. pp. 13–20. 25. Pyagay I. N., Svakhina Y. A., Titova M. E., et al. Determination of zeolite NaA (LTA) synthesis parameters from technogenic silica gel for water softening. Silicon. 2024. Vol. 16. pp. 6499–6514. 26. Zhang C., Decarreau A., Blanc P., et al. Kinetics of Mg–Ni saponite crystallization from precursor mixtures. Clays and Clay Minerals. 2024. Vol. 72. DOI: 10.1017/cmn.2024.29 27. Lurie Yu. Yu. Analytical chemistry of industrial wastewater. Moscow: Khimiya, 1984. 448 p. 28. Vernigora A. N., Volkova N. V., Gus′kova E. N. Simultaneous spectrophotometric determination of copper (II) and iron (III) in the joint presence in the form of complexes with sulfosalicylic acid. Vestnik Penzenskogo Gosudarstvennogo Universiteta. 2017. No. 2. pp. 85–91. 29. Khentov V. Ya. Environmental chemistry for technical universities. Rostov-on-Don: Feniks, 2005. 141 p. 30. Kuzin E. N., Mokrushin I. G., Kruchinina N. E. Assessment of the possibility of using leucoxene-quartz concentrate as raw material for production of aluminium and magnesium titanates. Zapiski Gornogo Instituta. 2023. Vol. 264. pp. 886–894. 31. Cheremisina O. V., Ponomareva M. A., Molotilova A. Yu., Mashukova Yu. A., Soloviev M. A. Sorption purification of acid storage facility water from iron and titanium on organic polymeric materials. Zapiski Gornogo Instituta. 2023. Vol. 264. pp. 971–980. 32. Piirainen V. Yu., Mikhailov A. V., Barinkov V. M., Starovoitov V. N. The use of sludge-peat composition for the processing of alumina production waste. Obogashchenie Rud. 2022. No. 6. pp. 51–58. 33. Popov G. G., Bolobov V. I., Oparina A. O., Shvets A. O. Effect of hydrogenation on hardness of metallic materials used in oil and gas industry. International Journal of Engineering, Transactions B: Applications. 2025. Vol. 38, Iss. 2. pp. 295–303. 34. Lebedev A. B., Bazhin V. Yu., Zhadovskiy I. T. Physico-chemical process behind self-disintegration of sinter resulting in the production of aluminium oxide and calcium γ-orthosilicate. Tsvetnye Metally. 2024. No. 2. pp. 80–86. 35. Pyagay I. N., Svakhina Y. A., Titova M. E., et al. Effect of hydrogel molar composition on the synthesis of LTA-type zeolites in the utilization of technogenic silica gel. Silicon. 2024. Vol. 16. pp. 4811–4819. |