Журналы →  Chernye Metally →  2025 →  №4 →  Назад

Ironmaking
Название Study of efficiency of thermal insulation of the outer surface of the blast furnace tuyere
DOI 10.17580/chm.2025.04.02
Автор A. G. Radyuk, M. M. Skripalenko, A. I. Ternovykh, A. V. Bugakov
Информация об авторе

National University of Science and Technology MISIS, Moscow, Russia

A. G. Radyuk, Dr. Eng., Prof., Dept. of Metal Forming, e-mail: radjuk@rambler.ru
M. M. Skripalenko, Cand. Eng., Associate Prof., Dept. of Metal Forming, e-mail: mms@misis.ru


NLMK, Lipetsk, Russia
A. I. Ternovykh, Head of Technology Projects, e-mail: alexeyivanovichfirst@rambler.ru
A. V. Bugakov, Chief Specialist, e-mail: alexander_bugakov@mail.ru

Реферат

At present, the problem of air tuyeres resistance increasing and heat loss decreasing through air tuyeres surface is solved in several ways. Simulation of tuyere’s thermal condition is appropriate for analysis of the techniques for further solving of this problem. The aim of the research was estimation of the tuyere’s thermal state while its interaction with liquid cast iron with using different kinds of heat insulation. Both computer simulation and experimental evaluation were carried out during research. DEFORM-3D Finite Element Method (FEM) software was used for computer simulation. Simulation results allowed thermal state estimation for different parts of the tuyere. Point-tracking option of the DEFORM-3D post-processor was applied for that purpose. Influence of thickness and thermo-physical properties of ceramics is studied. At that, ceramics is in the shape of sector with slip coating as a matter of blast furnace’s air tuyere burnout protection. Experimental data showed the necessity of combined protection: ceramic sector protects upper and lower part of inner cup and part of mug from cast iron; wear-resistant material surfacing protects the rest part of the mug from abrasion due dust-coal fuel. It is shown that usage of silica as heat insulation of tuyere outer surface allows decreasing heat loss due cooling water sufficiently. At that, increasing silica’s thickness allows increasing its resistance.

Ключевые слова Blast furnace, air tuyere, DEFORM-3D software, temperature field, tuyere burnout, heat losses, heat insulation materials, ceramics sector, silica
Библиографический список

1. Lymbina L. E., Yaroshenko Yu. G. Change in the wall temperature of an air tuyere upon contact with liquid metal. Izvestiya vuzov. Chernaya metallurgiya. 1986. No. 10. pp. 103–107.
2. Zhuk V. I. Analysis of thermal work of blast furnace air tuyeres. Vestnik PGTU. 2002. No. 12. pp. 10–15.
3. Andonyev S. M., Filipyev I. V., Kudinov A. N. Cooling of blast furnaces. Moscow : Metallurgiya, 1972. 368 p.
4. Bykovskikh P. S., Tishchenko V. A., Shutov K. V. Mathematical modeling of thermal work of the blast furnace air tuyere. Metally i lityo Ukrainy. 2015. No. 4. pp. 16–22.
5. Gao T. L., Jiao K. X., Ma H. B., Zhang J. L. Analysis of tuyere failure categories in 5800 m3 blast furnace. Ironmak. Steelmak. 2020. Vol. 48. pp. 586–591.
6. Gao T., Jiao K., Zhang J., Ma H. Melting erosion failure mechanism of tuyere in blast furnace. ISIJ Int. 2021. Vol. 61. pp. 71–78.
7. Farkas O., Móger R. Metallographic aspects of blast furnace tuyere erosion processes. Steel Res. Int. 2013. Vol. 84. pp. 1171–1178.
8. Radyuk A. G., Titlyanov A. E., Yakoev A. G., Pedos S. I. Improvement in service life of blast furnace tuyeres due to gas thermal spraying. Stal. 2002. Vol. 6. pp. 11–12.
9. Zhang J., Wang R., Hu R., Zhang C. et al. Failure mode and mechanism of a blast furnace tuyere. Eng. Fail. Anal. 2022. Vol. 137. 106294.
10. Pathak A., Sivakumar G., Prusty D., Shalini J. et al. Thermal spray coatings for blast furnace tuyere application. J. Therm. Spray Technol. 2015. Vol. 24. pp. 1429–1440.
11. Radyuk A. G., Titlyanov A. E., Skripalenko M. M. Modeling of the temperature field of blast furnace tuyeres using Deform-2D software. Metallurgist. 2017. Vol. 60 (9-10). pp. 1011–1015. DOI: 10.1007/s11015-017-0400-5
12. Gorbatyuk S. M., Tarasov Y. S., Levitskii I. A., Radyuk A. G. et al. Effect of a ceramic insert with swirler on gas dynamics and heat exchange in a blast furnace tuyere. Izvestiya. Ferrous Metallurgy. 2019. Vol. 62 (5). pp. 337–344. DOI: 10.17073/0368-0797-2019-5-337-344
13. Radyuk A. G., Titlyanov A. E., Sidorova T. Y. Thermal state of air tuyeres in blast furnaces. Steel in Translation. 2016. Vol. 46, Iss. 9. pp. 624–628. DOI: 10.3103/S0967091216090084
14. Chen Z., Zhang C., Zhang J., Zhang Y. et al. Temperature field simulation of Ni60A coating with different copper content on blast furnace tuyere. Mater. Today Commun. 2022. Vol. 32. 104093.
15. Guo X. P., Han W. Y. The numerical simulation analysis of tuyere’s temperature field and stress field. Adv. Mater. Res. 2013. Vol. 706. pp. 1701–1704.
16. Manshilin A. G., Skladanovsky E. N., Netsvetov V. I., Tunik O. A. Blast tuyere of blast furnace and method for applying of protective coating onto blast tuyere of blast furnace. Patent RF, No. 2235789. Applied: 04.11.2002. Published: 27.05.2004. Bulletin No. 15.
17. Kutateladze S. S., Borishansky V. M. Heat transfer handbook. Leningrad — Moscow : Gosenergoizdat, 1959. 414 p.
18. Bondarenko A. A., Gorbik A. S., Dyshlevich G. G. Study of thermal stress of different sections of tuyeres. Stal. 1983. No. 7. pp. 11–12.
19. Toropov E. V., Lymbina L. E. Heat flows on the wall surface of blast furnace air tuyeres : collection “Automation of power systems and power plants of industrial enterprises”. Chelyabinsk : Chelyabinsk State Technical University, 1994. pp. 42–48.
20. Chernenko N. M., Beylina N. Yu., Chernenko D. N. Technological aspects of obtaining heatresistant carbon-carbon ceramic composite materials: Proceedings of the 3rd International Scientific and Practical Conference “Composite Materials, Production, Application, Market Trends”. Moscow, 2009. pp. 1–8.

Language of full-text русский
Полный текст статьи Получить
Назад