Название |
Mechanical fatigue and cyclic
stability of structures made of thin superelastic TiNi-based wire with phase composition controlled
by synchrotron radiation |
Информация об авторе |
Institute for Problems of Chemical and Energetic Technologies of the Siberian Branch оf the Russian Academy of Sciences, Biysk, Russia1 ; National Research Tomsk State University, Tomsk, Russia2
E. S. Marchenko, Leading Researcher1, Head of the Laboratory for Medical Alloys and Shape Memory Implants2, Doctor of Physical and Mathematical Sciences, e-mail: 89138641814@mail.ru
National Research Tomsk State University, Tomsk, Russia G. A. Baigonakova, Senior Researcher, Candidate of Physical and Mathematical Sciences
M. A. Kovaleva, Postgraduate Student, Research Engineer T. V. Chaikovskaya, Professor, Doctor of Physical and Mathematical Sciences |
Библиографический список |
1. Zhu J., Zeng Q., Fu T. An updated review on TiNi alloy for biomedical applications. Corros. Rev. 2019. Vol. 37, Iss. 6. pp. 539–552. 2. Zhang L., Zhang Y. Q., Jiang Y. H., Zhou R. Superelastic behaviors of biomedical porous NiTi alloy with high porosity and large pore size prepared by spark plasma sintering. J. Alloy Compd. 2015. Vol. 644. pp. 513–522. 3. Heller L., Seiner H., Sittner P., Sedlаk P. et al. On the plastic deformation accompanying cyclic martensitic transformation in thermomechanically loaded NiTi. Int. J. Plast. 2018. Vol. 111. pp. 53–71. 4. de Vasconcellos L. M. R., Rodarte Y., do Prado R. F., de Vasconcellos L. G. O. et al. Porous titanium by powder metallurgy for biomedical application: characterization, cell citotoxity and in vivo tests of osseointegration. Biomed. Eng. 2012. Vol. 1. pp. 47–74.
5. Es-Souni M., Es-Souni M., Fischer-Brandies H. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal. Bioanal. Chem. 2005. Vol. 381. pp. 557–567. 6. Li C. Y., Yang X. J., Zhang L. Y., Chen M. F. et al. In vivo histological evaluation of bioactive NiTi alloy after 2 years implantation. Mater. Sci. Eng. 2007. Vol. 27. pp. 122–126. 7. Muhamedov M., Kulbakin D., Gunther V., Choynzonov E. et al. Sparing surgery with the use of TiNi-based endografts in larynx cancer patients. J. Surg. Oncol. 2015. Vol. 111. pp. 231–236. 8. Shtin V., Novikov V., Chekalkin T., Gunther V. et al. Repair of orbital post-traumatic wall defects by custom-made TiNi mesh endografts. J. Funct. Biomater. 2019. Vol. 10. pp. 1–9. 9. Topol`nickij E., Chekalkin T., Marchenko E., Yasenchuk Yu. et al. Evaluation of clinical performance of TiNi-based implants used in chest wall repair after resection for malignant tumors. J. Funct. Biomater. 2021. Vol. 12. 60. 10. Marchenko E., Baigonakova G., Yasenchuk Yu., Chekalkin T. Structure, biocompatibility and corrosion resistance of the ceramic-metal surface of porous nitinol. Ceram. Int. 2022. Vol. 48, Iss. 22. pp. 33514–33523. 11. Bansiddhi A., Sargeant T., Stupp S., Dunand D. Porous NiTi for bone implants: A review. Acta. Biomater. 2008. Vol. 4. pp. 773–782. 12. Sakamoto Y., Hirano K., Iida O., Soga Y. et al. Five-year outcomes of self-expanding nitinol stent implantation for chronic total occlusion of the superficial femoral and proximal popliteal artery. Catheter. Cardiovasc. Interv. 2013. Vol. 82. pp. 251–256. 13. Song C. History and current situation of shape memory alloys devices for minimally invasive surgery. Open. Med. Dev. J. 2010. Vol. 2. pp. 24–31. 14. Jenko M., Godec M., Kocijan A., Rudolf R. et al. A new route to biocompatible Nitinol based on a rapid treatment with H2/O2 gaseous plasma. Appl. Surf. Sci. 2019. Vol. 473. pp. 976–984. 15. Yasenchuk Yu., Marchenko E., Gunther S., Baigonakova G. et al. Softening effect during cyclic stretching of titanium nickelide knitwear. Mater. 2021. Vol. 27. pp. 459–481. 16. Chen Y., Tyc O., Molnarova O., Heller L. et al. Tensile deformation of superelastic NiTi wires in wide temperature and microstructure ranges. Shap. Mem. Superelasticity. 2019. Vol. 5. pp. 42–62. 17. Marandi L., Sen I. In-vitro mechanical behavior and high cycle fatigue characteristics of NiTi-based shape memory alloy wire. Int. J. Fatigue. 2021. Vol. 148. 106226. 18. Zhu X., Zhang X., Qian M. Reversible elastocaloric effects with small hysteresis in nanocrystalline Ni – Ti microwires. AIP Adv. 2018. Vol. 8. 125002. 19. Mahtabi M., Shamsaei N., Mitchell M. Fatigue of Nitinol: The state-ofthe-art and ongoing challenges. J. Mech. Behav. Biomed. Mater. 2015. Vol. 50. pp. 228–254. 20. Ammar O., Haddar N., Dieng L. Experimental investigation of the pseudoelastic behaviour of NiTi wires under strain- and stress-controlled cyclic tensile loadings. Intermet. 2017. Vol. 81. pp. 52–61. 21. Morch A., Astruc L., Witz J., Lesaffre F. et al. Modeling of anisotropic hyperelastic heterogeneous knitted fabric reinforced composites. J. Mech. Phys. Solids. 2019. Vol. 27. pp. 47–61. 22. Baigonakova G., Marchenko E., Chekalkin T., Kang J. et al. Influence of silver addition on structure, martensite transformations and mechanical properties of TiNiAg alloy wires for biomedical application. Mater. 2020. Vol. 13. pp. 1–11. 23. Li S., Mao Ch., Li H., Zhao Ya. Mechanical properties and theoretical modeling of self-centering shape memory alloy pseudo-rubber. S. Mater. Struct. 2011. Vol. 20. 115008. 24. Qin Y. Applications of advanced technologies in the development of functional medical textile materials. Med. Tex. Mater. 2016. pp. 55–70. 25. Robertson S., Pelton A., Ritchie R. Mechanical fatigue and fracture of Nitinol. Int. Mater. Rev. 2012. Vol. 57. pp. 1–37. 26. Svetogorov R., Dorovatovskii P., Lazarenko V. Belok/XSA diffraction beamline for studying crystalline samples at Kurchatov Synchrotron Radiation Source. Cryst. Res. Technol. 2020. Vol. 55, Iss. 5. 1900184. 27. Hubbard C., Evans E., Smith D. The reference intensity ratio, I/Ic, for computer simulated powder patterns. J. Appl. Cryst. 1976. Vol. 9. pp. 169–174. 28. Robles R. R., Gómez D. L., Nieto F. A. Cooperative formation flying control laws for automatic air to air refuelling. EUCASS. 2019. 8. DOI: 10.13140/RG.2.2.32098.58560 29. Ravandi M., Moradi A., Ahlquist S., Banu M. Numerical simulation of the mechanical behavior of a weft-knitted carbon fiber composite under tensile loading. Polym. 2022. Vol. 14. 451. 30. Otsuka K., Ren X. Physical metallurgy of Ti – Ni-based shape memory alloys. Prog. Mater. Sci. 2005. Vol. 50. pp. 511–678. |