Журналы →  Chernye Metally →  2025 →  №2 →  Назад

Mineral Processing
Название Obtaining high-quality iron concentrate from magnetite quartzites using a two-stage grinding and fine screening scheme
DOI 10.17580/chm.2025.02.01
Автор A. An. Mushketov, A. E. Pelevin
Информация об авторе

Uralmekhanobr, Yekaterinburg, Russia

A. An. Mushketov, Cand. Eng., Head of the Laboratory of Ferrous Metal Ore Beneficiation, e-mail: mushketov_a@umbr.ru

 

Ural State Mining University, Yekaterinburg, Russia

A. E. Pelevin, Dr. Eng., Prof., Associate Prof., Dept. of Mineral Processing, e-mail: a-pelevin@yandex.ru

Реферат

The possibility of improving the quality of concentrate obtained from magnetite quartzites of the Kursk Magnetic Anomaly using a two-stage grinding scheme is considered. The studies of the fractional composition by size and iron of the middlings of the first stage wet magnetic separation showed that with a decrease in the grain-size class, the mass fraction of iron in it increases from 13.69 to 65.63 %. In laboratory conditions, studies were performed on experimental modeling of the industrial scheme for processing middlings of the first stage wet magnetic separation. The study scheme consisted of preliminary screening of the middlings on a 0.15 mm sieve and separate enrichment of the undersize (rich) and oversize (poor) products. The undersize product is enriched according to a scheme including wet magnetic separation and screening of the magnetic product with a sieve size of 0.071 mm to obtain the first concentrate. The oversize product after grinding in the second stage is subjected to magnetic enrichment with screening on a 0.071 mm sieve of the magnetic product to obtain the second concentrate. The mass fraction of iron in the total concentrate (in undersize products) was 69.3–69.4 %. Based on laboratory studies, a two-stage scheme recommended for industrial use was developed. Recommendations are given on the sizes of industrial polyurethane screens. The possibility of obtaining an iron concentrate with an iron mass fraction of at least 69 % using a two-stage grinding scheme with fine screening is shown.

Ключевые слова High-quality concentrate, iron mass fraction, grinding, wet magnetic separation, fine screening, sieve opening size, undersize product
Библиографический список

1. Chernousov P. I., Karpalev A. E., Kramar A. V., Podusovskiy V. O. Comprehensive index of compound blast furnace smelting. CIS Iron and Steel Review. 2022. Vol. 23. pp. 9–14.
2. Bojian Chen, Tao Jiang, Jing Wen, Lin Li et al. Review of pellets and blast furnace slag research progress: the effects of MgO on metallurgical properties. Ironmaking & Steelmaking. 2023. Vol. 50, Iss. 8. pp. 1022–1036. DOI: 10.1080/03019233.2023.2192113
3. Bobkov V. I., Dli M. I., Sokolov A. M., Rubin Y. B. Analysis of chemical-metallurgical agglomeration processes during charge sintering. CIS Iron and Steel Review. 2020. Vol. 20. No 2. pp. 7–11.
4. Metolina P., Silva de Andrade R., Ramos B., Guardani R. Hydrogen direct reduction ironmaking process for zero CO2 emission: A study on the effect of particle properties changes during the multiple non-catalytic gas-solid reactions. Minerals Engineering. 2023. Vol. 201. 108188. DOI: 10.1016/j.mineng.2023.108188
5. Löf A., Ericsson M., Löf O. Iron ore market review. CIS Iron and Steel Review. 2019. Vol. 17. pp. 4–9.
6. Eriksson M., Löf A., Löf O. World iron ore market review 2019–2020. Gornaya promyshlennost. 2021. No. 1. pp. 74–82. DOI: 10.30686/1609-9192-2021-1-74-82
7. Osipova N. V. Investigation of the possibility of obtaining concentrate production targets based on a mathematical model of an ferrum ore processing site. CIS Iron and Steel Review. 2023. Vol. 25. pp. 4–9.
8. Yushina T. I., Chanturia E. L., Dumov A. M., Myaskov A. V. Modern trends of technological advancement in iron ore processing. Gornyi Zhurnal. 2021. No. 11. pp. 75–83.
9. Ismagilov R. I., Yushina T. I., Dumov A. M. Contrast range examination of rich iron ore from Mikhailovskoe deposit and evaluation of possibility of its preliminary concentration via physical methods. CIS Iron and Steel Review. 2023. Vol. 26. pp. 22–32.
10. Tadeu Gouvêa Junior J., Chipakwe V., de Salles Leal Filho L., Chehreh Chelgani S. Biodegradable ether amines for reverse cationic flotation separation of ultrafine quartz from magnetite. Scientific Reports. 2023. Vol. 13. 20550. DOI: 10.1038/s41598-023-47807-0
11. Johnson Rodrigues W., Azevedo Fernandes P., Clark Peres A. E. The effect of etheramine type on the hydrophobicity of quartz particles from iron ore. Minerals Engineering. 2024. Vol. 214. 108769. DOI: 10.1016/j.mineng.2024.108769
12. de Souza Correa A., Malena Fernandes Lima R. Effect of dolomite on cationic reverse flotation of iron ore with amide-amine. Minerals Engineering. 2023. Vol. 201. 108226. DOI: 10.1016/j.mineng.2023.108226
13. Ismagilov R. I., Kozub A. V., Gridasov I. N., Shelepov E. V. Modern directions of increasing the efficiency of processing ferruginous quartzites on the example of Mikhailovsky GOK. Gornaya promyshlennost. 2020. No. 4. pp. 98–103. DOI: 10.30686/1609-9192-2020-4-98-103
14. Kosoy G. M., Vinnikov A. Ya. Fine hydraulic screening of ground ores on a multi-frequency screen by Kroosh Technologies: in-process testing. Tsvetnye Metally. 2021. No. 6. pp. 10–15.
15. Frausto J. J., Ballantyne G. R., Runge K., Powell M. S. et al. The effect of screen versus cyclone classification on the mineral liberation properties of a polymetallic ore. Minerals Engineering. 2021. Vol. 169. 106930. DOI: 10.1016/j.mineng.2021.106930
16. Nemykin S. A., Kopanev S. N., Mezentseva E. V., Okunev S. M. Iron concentrate production with the increased content of useful component. Gornyi Zhurnal. 2017. No. 5. pp. 27–31.
17. Terekhin E. P., Chueva E. A., Khvorostyanova V. I. Improvement of the technology of additional beneficiation to improve the quality of iron ore concentrate. Tekhnika i tekhnologiya gornogo dela. 2023. No. 3. pp. 82–93. DOI: 10.26730/2618-7434-2023-3-82-93
18. Gzogyan S. R., Shcherbakov A. V. Improving the quality of concentrates of Stoilensky GOK with the use of magnetic-gravity separation. Obogashchenie Rud. 2020. No. 6. pp. 3–7.
19. Opalev A. S., Cherezov A. A. Experience of mastering magnetic-gravity separation at enterprises of Russia and CIS countries to improve the quality of iron ore raw materials. Gornaya promyshlennost. 2023. No. 3. pp. 122–128. DOI: 10.30686/1609-9192-2023-3-122-128
20. Opalev A. S. Improving the quality of magnetite concentrates based on magnetic-gravity separation. Gornyi Zhurnal. 2020. No. 9. pp. 72–77.
21. Pelevin A. E. Increasing the efficiency of iron-ore dressing by separation in an alternating magnetic field. Chernye Metally. 2021. No. 5. pp. 4–9.
22. Korchevenkov S. A., Aleksandrova T. N. Preparation of standard iron concentrates from nontraditional forms of raw material using a pulsed magnetic field. Metallurgist. 2017. Vol. 61. No. 5-6. pp. 375–381. DOI: 10.1007/s11015-017-0503-z
23. Macedo Rocha G., Vinicius Macedo da Cruz M., Pereira Lima N., Malena Fernandes Lima R. Reverse cationic flotation of iron ore by amide-amine: bench studies. Journal of Materials Research and Technology. 2022. Vol. 18. pp. 223–230. DOI: 10.1016/j.jmrt.2022.02.039
24. Zhang X., Gu X., Han Y., Parra-Álvarez N. et al. Flotation of iron ores: A review. Mineral Processing and Extractive Metallurgy Review. 2019. Vol. 42. pp. 1–29. DOI: 10.1080/08827508.2019.1689494
25. Opalev A. S., Karpov I. V., Krivovichev S. V. Enhancing magnetite quartzite processing efficiency at Karelsky Okatysh. Gornyi Zhurnal. 2021. No. 11. pp. 66–74.
26. Dmitriev A. N., Vitkina G. Yu., Petukhov R. V., Kornilkov S. V. et al. The characteristic of ores and concentrates of the open society “EVRAZ KGOK“. Advanced Materials Research. 2013. Vol. 834-836. pp. 364–369. DOI: 10.4028/www.scientific.net/AMR.834-836
27. Kornilkov S. V., Dmitriev A. N., Pelevin A. E., Yakovlev A. M. Separate processing of ore at Gusevogorsky deposit. Gornyi Zhurnal. 2016. No. 5. pp. 86–90.
28. Pelevin A. E., Sytykh N. A. Efficiency of screens and hydrocyclones in closed-cycle grinding of titanomagnetite ore. Mining Informational and Analytical Bulletin. 2022. No. 5. pp. 154-166. DOI: 10.25018/0236_1493_2022_5_0_154
29. Senchenko A. E., Kulikov Yu. V., Tokarenko A. V. Technological research is the basis for successful modernization of the Lebedinsky GOK`s production base. Gornyi Zhurnal. 2022. No. 6. pp. 59–67.
30. Pelevin A. E., Sytykh N. A., Cherepanov D. V. Particle size impact on dry magnetic separation efficiency. Mining Informational and Analytical Bulletin. 2021. No. 11-1. pp. 293–305. DOI: 10.25018/0236_1493_2021_111_0_293
31. Wang F., Tang D., Gao L., Dai H. et al. Magnetic entrainment mechanism of multi-type intergrowth particles for low-intensity magnetic separation based on a Multiphysics model. Minerals Engineering. 2020. Vol. 149. 106264. DOI: 10.1016/j.mineng.2020.106264
32. Pelevin A. E. Effects of magnetic flocculation on iron-bearing ore concentration. Obogashchenie Rud. 2021. No. 4. pp. 15–20.
33. Pelevin A. E., Sytykh N. A. Fine hydraulic screening for staged separation of titanium-magnetite concentrate. Obogashchenie Rud. 2021. No. 1. pp. 8–14.
34. Hamzeh Amiri S., Izadi-Yazdan Abadib M. Grinding iron ore concentrate by using HPGR and ball mills and their effects on pelletizing and reduction stages - a pilot-scale study. Canadian Metallurgical Quarterly. 2022. Vol. 61, Iss. 4. pp. 442–453. DOI: 10.1080/00084433.2022.2052522
35. Campos T. M., Petit H. A., Freitas R. O., Tavares L. M. Online prediction of pressing iron ore concentrates in an industrial HPGR. Part 1: Modeling approach. Minerals Engineering. 2023. Vol. 201. 108206. DOI: 10.1016/j.mineng.2023.108206

Language of full-text русский
Полный текст статьи Получить
Назад