Journals →  Gornyi Zhurnal →  2025 →  #1 →  Back

GEOMECHANICAL SUPPORT OF FIELD DEVELOPMENT
ArticleName The geotechnical analysis in the design and risk control at heap leaching pads
DOI 10.17580/gzh.2025.01.16
ArticleAuthor Bar N., Zlobin G. A.
ArticleAuthorData

Gecko Geotechnics, Kingstown, Saint Vincent and the Grenadines

N. Bar, Chief Geotechnical Engineer, PhD

 

KAZ Minerals, Almaty, Kazakhstan

G. A. Zlobin, Head of Geotechnical Engineering Department, Candidate of Geological and Mineralogical Sciences, germanzlo17@gmail.com

Abstract

The short-term and long-term stability of dumps, stock piles and heap leaching pads depends on the terrain and structure of bases, characteristics of piled materials, size and geometry of a structure, and on regional conditions, including seismicity and rainfall amount. The heap leaching pad at the Aktogay deposit in South-Eastern Kazakhstan was designed and is being constructed in favorable geotechnical conditions, with relatively flat base and at a good quality of the material being piled. The article reports the geotechnical analysis of the heap leaching pad during construction of additional levels in order to extract extra ore reserves. The geological-and-engineering appraisal made it possible to determine possibility of heightening of the heap leaching pad by piling two additional levels, and revealed feasibility of making the pile even higher (given additional research would be performed). The article offers a brief description of the field research at the early stage of construction, and the geotechnical modeling implemented on that basis. The slope stability assessment and disclosure of potential geotechnical risks combined 2D and 3D modeling (methods of limit equilibrium and finite elements). It is found out that 3D modeling detects deformation mechanisms, differing from 2D modeling results, at the lower values of the stability factor. The influence of the base steepness on the slope stability of the heap leaching pad is estimated. The study also describes the satellite monitoring data on slope stability.

keywords Heap leaching pad, 3D stability analysis of slopes, geotechnical modeling, satellite monitoring, Aktogay
References

1. Sharma S., Roy I. slope failure of waste rock dump at Jayant Opencast Mine, India: A case study. International Journal of Applied Engineering Research. 2015. Vol. 10, No. 13. pp. 33006–33012.
2. Trevithick R. S., Loch R. J., Roseby S. J., Vacher C. A. The application of digital photogrammetry to assess long-term stability of mine site waste rock dumps. Proceedings of the 13th International Soil Conservation Organisation Conference. Brisbane, 2004.
3. Galperin A. M., Kutepov Yu. I., Krupoderov V. S. Engineering-geological provision of formation and the following use of dump massives at mining enterprises. MIAB. 2015. Special issue 1. pp. 20–35.
4. Kuldeev E. I., Nurlybaev R. E., Fedotenko N. A., Ashimova A. A. Study of ash and slag waste to be used as secondary resources. Eurasian Mining. 2024. No. 1. pp. 20–24.
5. Yessengarayev Ye. K., Baimbetov B. S., Surimbayev B. N. Studies on heap leaching of gold with the addition of sodium acetate as an intensifying reagent. Non-ferrous Metals. 2020. No. 2. pp. 25–30.
6. Fedotov P. K., Senchenko A. E., Fedotov K. V., Burdonov A. E. Influence of ore processing behavior on heap-leach cyanidation and agitation leaching efficiency. Eurasian Mining. 2022. No. 1. pp. 55–58.
7. Hawley M., Cunning J. Guidelines for Mine Waste Dump and Stockpile Design. Clayton South : CSIRO Publishing, 2017. 370 p.
8. Bar N., Semi J., Koek M., Owusu-Bempah G., Day A. et al. Practical waste rock dump and stockpile management in high rainfall and seismic regions of Papua New Guinea. Slope Stability 2020: Proceedings of the 2020 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering. Perth : Australian Centre for Geomechanics, 2020. pp. 117–128.
9. Petersen J., Dixon D. G. Thermophilic heap leaching of a chalcopyrite concentrate. Minerals Engineering. 2002. Vol. 15, Iss. 11. pp. 777–785.
10. Trujillo J. Y., Mellado M. E., Gálvez E. D., Cisternas L. A. A method for the design and planning operations of heap leaching circuits. Computer Aided Chemical Engineering. 2011. Vol. 29. pp. 306–310.
11. Bouffard S. C., Dixon D. G. Investigative study into the hydrodynamics of heap leaching processes. Metallurgical and Materials Transactions B. 2001. Vol. 32, Iss. 5. pp. 763–776.
12. McBride D., Gebhardt J., Croft N., Cross M. Heap leaching: Modelling & forecasting using CFD technology. Minerals. 2018. Vol. 8, Iss. 1. DOI: 10.3390/min8010009
13. Bartlett R. W. Solution Mining. 2nd ed. Amsterdam : Gordon & Breach Science Publishers, 1998. 470 p.
14. Fazlullin М. I. Heap Leaching of Precious Metals. Moscow : Izdatelstvo Akademii gornykh nauk, 2001. 647 p.
15. Reyes A., van Zyl D. Consolidation and deformation analysis for the stability assessment of a heap leach pad. Heap Leach Solutions 2015 : Proceedings of the 3rd International Conference on Heap Leach Solutions. Reno : InfoMine Inc., 2015. pp. 135–148.
16. Pomortseva A. A., Karasev M. A., Pospekhov G. B. Engineering and geological support of the stability of the heap leach pad. Uspekhi sovremennogo estestvoznaniya. 2021. No. 1. pp. 63–69.
17. Sagintayev Z., Yerikuly Z., Zhaparkhanov S., Panichkin V., Miroshnichenko O. et al. Groundwater inflow modeling for a Kazakhstan copper ore deposit. Journal of Environmental Hydrology. 2015. Vol. 23.
18. Silacheva N. V., Kulbayeva U. K., Kravchenko N. A. Probabilistic seismic hazard assessment of Kazakhstan and Almaty city in peak ground accelerations. Geodesy and Geodynamics. 2018. Vol. 9, Iss. 2. pp. 130–141.
19. Ferretti A. Satellite InSAR Data: Reservoir Monitoring from Space. Houten : EAGE Publications, 2014. 160 p.
20. Bischoff C. A., Ferretti A., Novali F., Uttini A., Giannico C. et al. Nationwide deformation monitoring with SqueeSAR® using Sentinel-1 data. TISOLS: the Tenth International Symposium on Land Subsidence—Living with subsidence : Proceedings of IAHS. Delft, 2020. Vol. 382. pp. 31–37.
21. Leps T. M. Review of shearing strength of rockfill. Journal of the Soil Mechanics and Foundations Division. 1970. Vol. 96, No. 4. pp. 1159–1170.
22. Barton N., Kjærnsli B. Shear strength of rockfill. Journal of the Geotechnical Engineering Division. 1981. Vol. 107, No. 7. pp. 873–891.
23. Cobián J. C., Bautista M. M., Bar N., Hammah R. 3d limit equilibrium analysis and risk appraisal of Hondo waste rock stockpile designs. Rocscience Africa Conference 2022. Accra, 2022.
24. Griffiths D. V., Lane P. A. Slope stability analysis by finite elements. Géotechnique. 1999. Vol. 49, Iss. 3. pp. 387–403.
25. Diederichs M. S., Lato M., Hammah R., Quinn P. Shear Strength Reduction (SSR) approach for slope stability analyses. Rock Mechanics: Meeting Society’s Challenges and Demands : Proceedings of the 1st Canada–US Rock Mechanics Symposium. London : Taylor & Francis Group, 2007. Vol. 1. pp. 319–329.
26. Hammah R., Yacoub T., Corkum B., Curran J. The shear strength reduction method for the generalized Hoek–Brown criterion. Rock Mechanics for Energy, Mineral and Infrastructure Development in the Northern Regions : Proceedings of 40th US Rock Mechanics Symposium. New York : Curran Associates, Inc., 2005. pp. 234–239.
27. Bahsan E., Fakhriyyanti R. Comparison of 2D and 3D stability analyses for natural slope. International Journal of Engineering & Technology. 2018. Vol. 7, No. 4.35. pp. 662–667.
28. Chakraborty A., Goswami D. Three-dimensional slope stability analysis using stability charts. International Journal of Geotechnical Engineering. 2021. Vol. 15, Iss. 5. pp. 642–649.
29. McQuillan A., Bar N. The necessity of 3D analysis for open-pit rock slope stability studies: Theory and practice. Journal of the Southern African Institute of Mining & Metallurgy. 2023. Vol. 123, No. 2. pp. 63–70.
30. Bar N., Zlobin G. A. Geotechnical design of slopes and risk control in Aktogay open pit mine. Gornyi Zhurnal. 2024. No. 1. pp 89–94.

Language of full-text russian
Full content Buy
Back