ArticleName |
Direct dynamic method of calculating an industrial building frame
for seismic load from drilling and blasting operations |
ArticleAuthorData |
Peter the Great Saint-Petersburg Polytechnic University, Saint-Petersburg, Russia
A. V. Yavarov, Candidate of Engineering Sciences, Associate Professor, yavarov_av@spbstu.ru
Gipronickel Institute, Saint-Petersburg, Russia A. V. Trofimov, Deputy Director of the Research and Development Department, Candidate of Engineering Sciences P. A. Tyapkina, Junior Researcher of Geotechnical Engineering Laboratory A. V. Fedoseev, Leading Researcher of Geotechnical Engineering Laboratory, Candidate of Engineering Sciences |
Abstract |
Assessment of the permissible seismic impact on structures from drilling and blasting operations is performed based on values of permissible velocities, stipulated by regulatory documents. This approach may impose excessively strict requirements on reducing the mass of explosive charges or, conversely, not take into account the specific features of a particular structure. To analyse the resulting stress-strain state of engineering structures, this paper makes a case for direct dynamic calculations performed in computational complexes utilizing the finite element method. Direct integration of the equations of motion over time allows computer modelling of a structure's response to a dynamic action both during its implementation and after its completion. As a consequence, unlike in the linearspectral method, the short duration of the investigated impact is taken into account, which, in comparison with earthquakes, among other things, distinguishes the studied phenomena into a separate class of problems. The paper describes a methodology of building models for direct dynamic calculation of structures' response to seismic load from drilling and blasting operations. The authors emphasise the differences in solving problems in static and dynamic formulations. In particular, instructions on application of loads, as well as assignment of material parameters and boundary conditions are given. In view of assigning damping in Rayleigh form, and also considering the issue of vibration-sensitive equipment operating in structures, an additional series of models with different pairs of natural frequencies is introduced. The presented methodology is illustrated using an example of calculating a frame of an industrial building. The analysis of the obtained calculation results allows to specify recommendations on permissible values of velocities for each object exposed to impact of drilling and blasting operations, especially structures with a large number of defects and damages. |
References |
1. AS 2187.2–2006. Explosives—Storage and use. Part 2: Use of explosives. Sydney : Standards Australia, 2006. 10 p. 2. Siskind D. E., Stagg M. S., Kopp J. W., Dowding C. H. S tructural Response and Damage Produced by Ground Vibration from Surface Mine Blasting : Report of Investigations 8507. Series: United States. Washington : Bureau of Mines, 1980. 84 p. 3. BS 6472-2:2008. Guide to Evaluation of Human Exposure t o Vibration in Buildings. Blast-Induced Vibration. London : British Standards Institution, 2008. 24 p 4. BS 7385-2:1993. Evaluation and Measurement for Vibratio n in Buildings. Part 2: Guide to Damage Levels from Groundborne Vibration. London : British Standards Institution, 1993. 16 p. 5. DIN 4150-1:2022-01. Erschütterungen im Bauwesen. Teil1: Vorermittlung von Schwingungsgrößen. Berlin : Deutsches Institut für Normung, 2022. 55 s. 6. DIN 4150-3:2016-12. Erschütterungen im Bauwesen. Teil 3. Ei nwirkungen auf bauliche Anlagen. Berlin : Deutsches Institut für Normung, 2016. 23 s. 7. ISO 4866:2010. Mechanical Vibration and Shock. Vibration of Fixed Structures. Guidelines for the Measurement of Vibrations and Evaluation of Their Effects on Structures. Geneva : International Organization for Standardization, 2010. 40 p. 8. NS 8141-1:2022. Vibrasjoner og støt—Veiledende grenseverdier for byggeog anleggsvirksomhet, bergverkog trafikk. Del 1: Virkning av vibrasjoner og lufttrykkstøt på byggverk, inkludert tunneler og bergrom. Oslo : Standard Norge, 2022. 9. SS 460 4866:2011. Vibration och stöt—Riktvärden för sprängningsinducerade vibrationer i byggnader. Stockholm : Swedish Standards Institute, 2011. 10. GOST R 52892–2007. Vibration and Shock. Vibration of Buildings. Measurement of Vibration and Evaluation of Its Effects On Structure. Moscow : Standartinform, 2008. 20 p. 11. Darbinyan T. P., Fedoseev A. V., Yavarov A. V., Tyapkina P. A. Evaluation criteria of blasting-induced seismic effect on buildings and structures in global practices and in regulatory documents. Gornyi Zhurnal. 2024. No. 3. pp. 17–24. 12. Persson P.-A., Holmberg R., Jaimin Lee. Rock Blasting and Explosives Engi neering. London : CRC Press, 1994. 560 p. 13. Medvedev S. V. Blasting-Induced Seismicity in Mining. Moscow : Nedra, 1964. 188 p. 14. Tseytlin Ya. I., Smoliy N. I. Seismic and Shock Air Waves of Industrial Blasts. Moscow : Nedra, 1981. 192 p. 15. Sadovskiy M. A. Geophysics and Physics of Explosion: Selectals. Moscow : Nauka, 2004. 440 p. 16. Nasonov I. D. Modeling of Mining Processes. Moscow : Nedra, 1969. 206 p. 17. Kholodilov A. N., Istomin R. S., Kirilenko V. I. Improvement technique for manufacturing equivalent materials for modeling nonlinear geomechanical processes in underground mineral mining. MIAB. 2024. No. 10. pp. 108–122. 18. Fadeev A. B. Finite Element Method in Hy dromechanics. Moscow : Nedra, 1987. 221 p. 19. Golovchenko Yu. Yu., Lepekhin I. S., Rumyantsev A. E., Sonnov M. A., Trofimov A. V. Development of numerical geomechanical models with different levels of detail using the example of the Angidrit underground mine of the Kayerkansky ore mine. Gornaya Promyshlennost. 2023. No. 4. pp. 79–88. 20. Bathe K.-J. Finite Element Procedures. New Jersey : Prentice Hall, 1996. 1037 p. 21. Geraymovich Yu. D., Evzerov I. D., Kirichok V. V., Kolesnikov A. V., Kuztetsova E. V. et al. LIRA 10.12 Software System : User’s Manual. Lira Soft LLC, 2021. 859 p. 22. SP 14.13330.2018. Seismic Building Design Code (SNiP II-II-7-81). Moscow : Standartinform, 2018. 114 p. 23. Nuzhdin L. V., Mikhaylov V. S., Konovalova S. V. Refinement of methods for dynamic loads assessment considering frame buildings in the conditions of technical seismic impact. Prirodnye i tekhnogennye riski. Bezopasnost sooruzheniy. 2019. No. 3(40). pp. 53–60. 24. Perelmuter A. V., Slivker V. I. Design Models of Structures and Their Analysis. Moscow : DMK, 2009. 596 p. 25. Malkov N. M., Stotsenko A. A. Structural Model Design : Tutorial. Vladivostok : DVPI, 1986. 80 p. 26. Kassimali A. Structural Analysis. 5th ed. Stamford : Cengage Learning, 2015. 814 p. 27. Perelmuter A. V. Interviews on Structural Mechanics. 3rd revised and enlarged edition. Moscow : SCAD Soft, 2018. 330 p. 28. Shashkin A. G. Design of Buildings and Underground Structures in Complicated Geotechnical Conditions in Saint-Petersburg. Moscow : Geomarketing, 2014. 351 p. 29. Ulitskiy V. M., Shashkin A. G., Shashkin V. A. Principles of Joint Design of Buildings and Foundations. Saint-Peterburg : Izdatelstvo instituta “Georekonstruktsiya”, 2014. 327 p. 30. Tyapkina P. A., Yavarov A. V., Fedoseev A. V. Primary processing of instrument records of vibrations in structures caused by drilling and blasting operations. Inzhenernye issledovaniya. 2024. No. 2(17). pp. 3–12. 31. Le Ty Kuang Chung. Method of Static Inclusion of Higher Modes of Vibrations in Structural Dynamics Desings : Dissertation of Candidate of Engineering Sciences. Saint-Petersburg, 2021. 119 p. 32. Gordeev V. N., Lantukh-Lyashchenko A. I., Pashinskiy V. A., Perelmuter A. V., Pichugin S. F. Loads and Effects on Buildings and Structures. 3rd revised edition. Moscow : SCAD Soft, 2009. 514 p. 33. SP 20.13330.2016. Loads and Actions (SNiP 2.01.07-85). Moscow, 2016. 80 p. 34. SP 15.13330.2020. Masonry and Reinforced Masonry Structures (SNiP П-22-81). Moscow : Standartinform, 2021. 88 p. 35. SP 16.13330.2017. Steel Structures (SNiP II-23-81). Moscow : Standartinform, 2017. 150 p. 36. SP 63.13330.2018. Concrete and Reinforced Concrete Structures. General Provisions (SNiP 52-01–2003) . 126 p. 37. SP 64.13330.2017. Timber Structures (SNiP II-25–80). Moscow : Standartinform, 2017. 90 p. 38. SP 413.1325800.2018. The buildings and Structures under Dynamic Actions. Design Rules . Moscow : Standart inform, 2019. 36 p. 39. Kaprielov S. S., Sheynfeld A. V., Travush V. I., Karpenko N. I., Krylov S. B. Assessment of strength and deformation characteristics of high-strength concrete in structures and the dynamics of their changes over time. Stroitelny materialy. 2023. No. 11. pp. 28–38. 40. Kaprielov S. S., Sheinfeld A. V., Selyutin N. M. Control of heavy concrete characteristics affecting structural stiffness. International Journal for Computational Civil and Structural Engineering. 2022. Vol. 18, No. 1. pp. 24–39. 41. Babanov V. V., Evseev N. A. Sizing of stiffness parameters of reinforced concrete structures in finite-element dy namic calculation of facilities. Zhilishchnoe stroitelstvo. 2017. No. 12. pp. 26–29. 42. Rutman Yu. L., Ostrovkaya N. V. Methods of Theory of Vibrations in Problems in Structural Dynamics : Tutorial. Saint- Petersburg : SPbGASU, 2019. 137 p. 43. GOST R 52892–2007. Vibration and Shock. Vibration of Buildings. Measurement of Vibration And Evaluation of Its Effects on Structure. Moscow : Standartinform, 2008. 20 p. 44. Kurzych A. T., Jaroszewicz L. R., Dudek M., Kowalski J. K., Bernauer F. et al. Meas urements of rotational events generated by artificial explosions and external excitations using the optical fiber sensors network. Sensors. 2020. Vol. 20, Iss. 21. ID 6107. |