Название |
Optimization of heat treatment of 30Kh13 steel for oil industry to
operate in hydrogen sulfide environment: analysis of accelerated and standard tests |
Информация об авторе |
Perm National Research Polytechnic University, Perm, Russia1 ; JSC ELKAM-Neftemash, Perm, Russia2
A. V. Kravchenko, Postgraduate Student, Dept. of Metal Science, Thermal and Laser Metal Processing1, Head of Quality Control2, e-mail: andrew@vputehod.ru S. N. Moltsen, Postgraduate Student, Dept. of Metal Science, Thermal and Laser Metal Processing1, Quality Director2, e-mail: stanislav@vputehod.ru
Perm National Research Polytechnic University, Perm, Russia1 ; Metallprom, Perm, Russia2 D. A. Nikitin, Master, Dept. of Metal Science, Thermal and Laser Processing of Metals1, Quality Specialist2, e-mail: 89_87@bk.ru
Perm National Research Polytechnic University, Perm, Russia T. V. Nekrasova, Cand. Eng., Associate Prof., Dept. of Metal Science, Thermal and Laser Processing of Metals |
Ключевые слова |
Hydrogen sulfide environment, steel 30Kh13, steel heat treatment, accelerated testing, NACE TM0177, mechanical properties, strength and plasticity, impact toughness, oil industry, corrosion resistance, material optimization, operational properties, reliability, hydrogen charging |
Библиографический список |
1. Heidersbach R. Metallurgy and corrosion control in oil and gas production. 2nd ed. Wiley, 2018. 368 p. 2. Georgiev M. N., Simonov Yu. N. Crack resistance of iron-carbon alloys: monograph. Perm : Izdatelstvo PNIPU, 2013. 419 p. 3. Callister W. D., Rethwisch D. G. Materials science and engineering : An introduction. 10th ed. Wiley, Hoboken, NJ, 2018. 992 p. 4. Brown B. F. Stress corrosion cracking control measures. Vol. 156. US Department of Commerce, National Bureau of Standards, 1977. 96 p. 5. Borisenkova E. A. Development and application of methods for studying the influence of the composition and structure of steel pipe materials on corrosion resistance in oil environments: Dissertation … of Candidate of Engineering Sciences. Penza: Izdatelstvo PGU, 2016. 198 p. 6. Taishi Fujishiro, Takuya Hara, Kyono Yasuda, Daisuke Mizuno et al. Sour environmental severity for hydrogen-induced cracking susceptibility. Corrosion. 2022. Vol. 78, Iss. 2. P. 189–197. 7. Tkacheva V. E., Markin A. N., Kshnyakin D. V. et al. Corrosion of downhole equipment in hydrogen sulfide-containing environments. Praktika protivokorrozionnoy zashchity. 2021. Vol. 26, No. 2. pp. 7–26. 8. Kravchenko A. V., Moltsen S. N., Simonov Yu. N., Polezhaev R. M. et al. Analysis and selection of methods for testing steels for resistance to sulfide stress corrosion cracking in H2S-containing environments. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie. 2021. Vol. 23, No. 2. pp. 43–54. DOI: 10.15593/2224-9877/2021.2.06 9. Kravchenko A. V., Moltsen S. N., Makarova I. V., Simonov Yu. N. et al. Special mode of heat treatment of 30Kh13 steel for operation of parts in oil wells containing H2S. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie. 2022. Vol. 24, No. 4. pp. 96–105. DOI: 10.15593/2224-9877/2022.4.11 10. Konishchev K. B., Semenov A. M., Chaban A. S., Lobanova N. A. et al. Features of the mechanism of stress corrosion cracking of pipe metal in environments containing hydrogen sulfide and carbon dioxide. Vesti gazovoy nauki. 2019. No. 3 (40). pp. 60–66. 11. GOST 5632–72. High-alloy steels and corrosion-proof, heat-resisting and heat treated alloys. Grades. Introduced: 01.01.1975. 12. GOST 1497–84. Metals. Methods of tension test. Introduced: 01.01.1986. 13. Romaniv O. N., Nikiforchin G. N. Mechanics of corrosion failure of structural alloys. Moscow : Metallurgiya, 1986. 292 p. 14. Corrosion resistance of chemical production equipment: methods of protecting equipment from corrosion. Reference edition. Leningrad : Khimiya, 1987. 280 p. 15. GOST 9454–78. Metals. Method for testing the impact strength at low, room and high temperature. Introduced: 01.01.1979. 16. Pumpyansky D. A., Pyshmintsev I. Yu., Vydrin A. V., Kuznetsov V. I. et al. Fundamentals of metal science and pipes production technology made of corrosion-resistant steels: monograph. Moscow : Izdatelstvo Metallurgizdat, 2023. 682 p. 17. Yasuda K., Ishikawa N., Fujishiro T., Hara T. et al. In situ 3D analysis of hydrogen induced cracking behavior in linepipe steels to investigate sour environmental severity. Corrosion. 2021. 16383. 18. GOST 54153–2010. Steel. Method of atomic emission spectral analysis. Introduced: 01.01.2012. 19. GOST 9013–59. Metals. Method of measuring Rockwell hardness. Introduced: 01.01.1969. 20. Saleh A. A., Hejazi D., Gazder A. A. et al. Investigation of the effect of electrolytic hydrogen charging of X70 steel: II. Microstructural and crystallographic analyses of the formation of hydrogen induced cracks and blisters. International Journal of Hydrogen Energy. 2016. Vol. 41, Iss. 28. pp. 12424-12435. 21. Shtremel M. A. Destruction. In 2 books. Book 1. Destruction of material: monograph. Moscow: Izdatelskiy dom MISIS, 2014. 670 p. 22. Harris Z. D., Marshall R. S., Kelly R. G., Burns J. T. Coupling fracture mechanics experiments and electrochemical modeling to mitigate environment-assisted cracking in engineering components. Corrosion. 2023. Vol. 79, Iss. 3. pp. 363–375. 23. Kashkovskiy R., Strelnikova K., Fedotova A. Application of electrochemical impedance spectroscopy to study hydrogen sulphide corrosion of steel and its inhibition: a review. Corrosion Engineering, Science and Technology. 2019. Vol. 54, No. 6. pp. 493–515. |