Journals →  Черные металлы →  2024 →  #10 →  Back

75 лет кафедре «Металловедение, термическая и лазерная обработка металлов» Пермского национального исследовательского политехнического университета
ArticleName Исследование фазовых превращений в стали 14Х2Г2НМФБ, обеспечивающих высокопрочное состояние
DOI 10.17580/chm.2024.10.04
ArticleAuthor С. К. Лаптев, А. А. Шацов, Л. В. Спивак, С. К. Гребеньков
ArticleAuthorData

Пермский национальный исследовательский политехнический университет, Пермь, Россия

С. К. Лаптев, аспирант кафедры «Металловедение, термическая и лазерная обработка металлов» (МТО), эл. почта: sklaptev@platinum-perm.ru
А. А. Шацов, профессор кафедры МТО, докт. техн. наук, эл. почта: shatsov@pstu.ru
Л. В. Спивак, профессор кафедры МТО, докт. физ.-мат. наук, эл. почта: lspivak2@mail.ru
С. К. Гребеньков, ведущий инженер кафедры МТО, канд. техн. наук, эл. почта: drive@rtural.ru

Abstract

Реечная структура вносит вклад в прочность 1–2 порядка больше, чем большеугловые границы пакетов. Формируются пакеты и рейки из аустенита, поэтому его свойства во многом определяют характеристики низкоуглеродистых мартенситных сталей (НМС). Калориметрическими и дилатометрическими методами исследованы фазовые превращения и структура низкоуглеродистой мартенситной стали 14Х2Г2НМФБ при полной закалке и закалке из межкритического интервала (МКИ) температур. Показано, что фазовые превращения при нагреве протекают по двум механизмам, начинаются со сдвигового, в некотором интервале температур наблюдается наложение сдвигового и диффузионного механизмов, а заканчиваются диффузионным. Определена энергия активации диффузионного перехода. Показано, что предпочтительным режимом заключительной закалки для получения наилучшего сочетания механических и эксплуатационных свойств является закалка из МКИ.

keywords Мартенсит, аустенит, закалка, межкритический интервал температур, конструкционная прочность, сдвиговые, диффузионные механизмы, термокинетика
References

1. Shabalov I. P., Filippov V. G., Velikodnev V. Ya., Chevskaya O. N. Strength and cold resistance of martensitic steels with ultra-low carbon content. Actual problems of strength: collection of abstracts of the LVIII International Conference dedicated to the memory of professor E. V. Kozlov, May 16–19, 2017, Perm, Russia. Perm : Novoprint, 2017. p. 74.
2. GOST 32696–2014 (ISO 11961:2008). Steel drill pipes for petroleum and natural gas industries. Specifications. Introduced: 01.01.2016.
3. GOST R 50278–92. Drill pipes with weld-on tool joints. Specifications. Introduced: 01.01.1994.
4. Yu M., Gou R. B., Dan W. J. et al. Microstructure distribution parameters for ferrite-martensite dual-phase steel. Strength of Materials. 2021. Vol. 53. No. 1. pp. 173–182.
5. Bag A., Ray K. K., Dwarakadasa E. S. Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels. Metall Mater. Trans. A. 1999. Vol. 30. pp. 1193–1202.
6. Cottrell A. H. Theoretical aspects of fracture. Fracture Proceedings of an International Conference on the atomic mechanisms of fracture held in Swampscott, Massachusetts (USA). Translated from English. Moscow : Metallurgizdat, 1963. pp. 30–68.
7. Simich-Lafitsky N. D., Koldayev A. V., Kraposhin V. S. et al. Mechanism of the origin of precipitation of refractory metal carbides during hot rolling of automotive sheet steel. Metallovedenie i termicheskaya obrabotka metallov. 2019. No.11. pp. 3–8.
8. Goldsteyn M. I., Grachev S. V., Veksler Yu. L. Special steels: textbook for universities. Moscow : MISIS, 1999. 408 p.
9. Babenko A. A., Zhuchkov V. I., Selmenskikh N. I., Upolovnikova A. G. Structure and properties of low-carbon pipe steel 17G1S-U, microalloyed with boron. Izvestiya vuzov. Chernaya metallurgiya. 2018. Vol. 61. No. 10. pp. 774–779.
10. Tetyueva T. V., Ioffe A. V., Denisova T. V., Trifonova E. A. Features of structure formation in lowalloy steel 08KhMFBChA during quenching and tempering. Metallovedenie i termicheskaya obrabotka metallov. 2012. No. 10. pp. 34–38.
11. Safarov I. M., Korznikov A. V., Galeev R. M. et al. Strength and impact toughness of low-carbon steel with fibrous UFG structure. Fizika metallov i metallovedenie. 2014. Vol. 115. No. 3. pp. 315–323.
12. Gorynin V. I., Kondratyev S. Yu., Olenin M. I., Rogozhkin V. V. Concept of carbide design of steels with increased cold resistance. Metallovedenie i termicheskaya obrabotka metallov. 2014. No. 10. pp. 32–37.
13. Kolbasnikov N. G., Kuzin S. A., Teteryatnikov V. S. et al. On the role of martensitic-austenitic component of bainitic structure in formation of properties of pipe steel. 2. Deformation and thermal stability of austenite. Metallovedenie i termicheskaya obrabotka metallov. 2022. No. 3. pp. 3–12.
14. Liu Z.-Q., Miyamoto G., Yang Z. G. et al. Carbon enrichment in austenite during bainite transformation in Fe-3Mn-C alloy. Metallurgical and Materials Transactions A. 2015. Vol. 46, Iss. 4. pp. 1544–1549.
15. Maysuradze M. V., Yudin Yu. V., Kuklina A. A. Formation of microstructure during heat treatment of promising low-carbon martensitic steel. Metallovedenie i termicheskaya obrabotka metallov. 2020. No. 9. pp. 9–16.
16. Barsukova T. V., Panov D. O., Simonov Yu. N. Regularities of formation of structure and properties of deformed low-carbon steel during incomplete hardening. Metallovedenie i termicheskaya obrabotka metallov. 2021. No. 7. pp. 3–9.
17. Chudyk I., Poberezhny L., Hrysanchuk A., Poberezhna L. Corrosion of drill pipes in high mineralized produced waters. 6th International Conference “Fracture Mechanics of Materials and Structural Integrity”, FMSI 2019, 3–6 June, 2019, Lviv, Ukraine. Amsterdam : Elsevier B. V., 2019. pp. 260–264.
18. Han L., Hu F., Wang H. et al. A new method to determine the required impact toughness for petroleum drill pipe used in critical sour environment. Procedia Engineering. 2011. Vol. 16. pp. 667–672.
19. Han Y., Zhao X., Bai Z., Yin C. Failure analysis on fracture of a S135 drill pipe. Procedia Materials Science. 2014. Vol. 3. pp. 447–453.
20. Li F. Investigation on impact absorbed energy index of drill pipe. Engineering Failure Analysis. 2020. Vol. 118. 104823.
21. Sedmak A., Grbović A., Kirin S. et al. Material effects on risk assessment of residual life of oil drilling rig pipe. 1st Virtual European Conference on Fracture - VECF1. Amsterdam : Elsevier B. V., 2020. pp. 1315–1320.
22. Priymak E., Atamashkin A., Stepanchukova A. Effect of post-weld heat treatment on the mechanical properties and mechanism of fracture of joint welds made by thompson friction welding. Materials Today: Proceedings. 2019. Vol. 11. No. 1. pp. 295–299.
23. Dong L., Zhu X., Yang D. Study on mechanical behaviors of double shoulder drill pipe joint thread. Petroleum. 2019. Vol. 5, Iss. 1. pp. 102–112.
24. Lachinyan L. A. Operation of the drilling column. Moscow : Nedra, 1992. 214 p.
25. Popelyukh A. I. Deformation and destruction of steels under conditions of impact-fatigue loading: thesis of inauguration of Dissertation … of Doctor of Engineering Sciences. Novosibirsk, 2021. 40 p.
26. Rodionov D. P., Shchastlivtsev V. M. Steel single crystals. Yekaterinburg : UrO RAN, 1996. 276 p.
27. Klyayner L. M. Shatsov A. A. Structural high-strength low-carbon steels of martensitic class. Perm : Izdatelstvo Permskogo gosudarstvennogo tekhnicheskogo universiteta, 2008. 303. p.
28. GOST 1497–84. Metals. Methods of tension test. Introduced: 01.01.1986.
29. GOST 9454–78. Metals. Method for testing the impact strength at low, room and high temperature. Introduced: 01.01.1979.
30. GOST 9013–59. Metals. Method of measuring Rockwell hardness. Introduced: 01.01.1969.
31. Kamenskikh A. P., Zayats L. Ts., Kleiner L. M. et al. Features of γ → α-transformation in 12Kh2G2NMFT steel. Fizika metallov i metallovedenie. 2002. Vol. 93. No. 1. pp. 90–93.
32. Ryaposov I. V., Klyayner L. M., Shatsov A. A. Volumetric nanostructuring of low-carbon martensitic
steels by thermal action. Metallovedenie i termicheskaya obrabotka metallov. 2012. No. 9. pp. 9–14.
33. Yugay S. S., Klyayner L. M., Shatsov A. A., Mitrokhovich N. N. Structural heredity in low-carbon martensitic steels. Metallovedenie i termicheskaya obrabotka metallov. 2004. No. 12. pp. 24–29.
34. Russkikh I. M., Shatsov A. A. Structural, physical and mechanical aspects of the influence of structural-wave magnetic resonance treatment on low-carbon martensitic steels. Metallovedenie i termicheskaya obrabotka metallov. 2024. No. 1 (823). pp. 47–52.
35. Russkikh I. M., Shatsov A. A. Effect of thermal cycling treatment on properties of low-carbon martensitic steel 15Kh2G2NMFB for precision instrument parts. Metallovedenie i termicheskaya obrabotka metallov. 2023. No. 3 (813). pp. 3–8.
36. Berezin S. K., Shatsov A. A., Grebenkov S. K., Spivak L.V. Structural-phase transitions in cold-resistant low-carbon martensitic steels prone to structural heredity. Metally. 2018. No. 3. pp. 9–23.
37. Klyayner L. M., Spivak L. V., Shatsov A. A. et al. Phase transformations in the 07Kh3GNM alloy. Vestnik Permskogo universiteta. Fizika. 2009. Iss. 1 (27). pp. 100–103.
38. Vyazovkin S., Burnham A. K., Criado J. M. et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta. 2011. Vol. 520. DOI: 10.1016/j.tca.2011.03.034
39. Bodyako N. M., Astapchik S. A., Yaroshevich G. B. Maraging steels Minsk : Nauka i tekhnika, 1976. 248 p.
40. Bokshteyn B. S., Veksler Yu. G., Vinograd M. I., Drozdovsky B. A. Metal science and heat treatment of steel. Test and research methods. Moscow: Metallurgiya, 1983. 352 p.
41. Lobanov M. L., Rusakov G. M., Urtsev V. N. et al. Thermal effect of bainitic transformation in pipe steels during accelerated cooling. Pisma o materialakh. 2018. Vol. 8. No. 3 (31). pp. 246–251.
42. Kissinger H. E. Reaction kinetics in differential thermal analysis. Analytical Chemistry. 1957. Vol. 29, Iss. 11. pp. 1702–1706.
43. Krishtal M. A. Diffusion mechanism in iron alloys. Moscow : Metallurgiya, 1972. 400 p.
44. Larinin D. M., Klyayner L. M., Shatsov A. A. High-temperature nitriding of low-carbon martensitic steel 12Kh2G2NMFB in non-toxic salt melts. Metallovedenie i termicheskaya obrabotka metallov. 2008. No. 10 (640). pp. 46–51.
45. Yugay S. S., Klyayner L. M., Shatsov A. A. Structure and properties of nitrided low-carbon martensitic steel 12Kh2G2NMFT. Fizika metallov i metallovedenie. 2005. Vol. 99. No. 1. pp. 110–115.
46. Ivanov A. S., Tikhomirov S. S., Kozlova E. N. et al. Formation of structure and properties of surface layers during carburization of low-carbon martensitic steels. Perspektivnye materialy. 2006. No. 6. pp. 72–77.
47. Belikov S. V., Sergeeva K. I., Karabanalov M. S. et al. Effect of heating temperature in the intercritical range on formation of subgrain structure in pre-hardened low-alloy steels. Sovremennye problemy nauki i obrazovaniya. 2013. No. 2. pp. 1–7.
48. Berezin S. K., Shatsov A. A., Grebenkov S. K., Spivak L. V. Structural-phase transitions in cold-resistant low-carbon martensitic steels prone to structural heredity. Metally. 2018. No. 3. pp. 9–23.
49. Yugai S. S., Kleiner L. M., Shatsov A. A., Mitrokhovich N. N. Formation of the Structure and Properties of a Low-Carbon Martensitic Steel 12Kh2G2NMFT upon Quenching. The Physics of Metals and Metallography. 2004. Vol. 97, Iss. 1. pp. 98–103.
50. Rudskoy A. I. Scientific foundations of controlling the structure and properties of steels in thermomechanical processing processes: scientific edition. Moscow : RAN, 2019. 276 p.

Language of full-text russian
Full content Buy
Back