Журналы →  Chernye Metally →  2024 →  №9 →  Назад

Machine-building technologies
Название Technological support of workpiece surface quality based on local cryogenic impact during processing of austenitic steels
DOI 10.17580/chm.2024.09.13
Автор V. V. Maksarov, Nguyen Van Dao, A. D. Khalimonenko, P. V. Shishkin
Информация об авторе

Empress Catherine II Saint Petersburg Mining University, St. Petersburg, Russia

V. V. Maksarov, Dr. Eng., Prof., Dean of the Faculty of Mechanical Engineering, e-mail: maks78.54@mail.ru
Nguyen Van Dao, Postgraduate Student, Dept. of Mechanical Engineering, e-mail: nguyenvandao091097@gmail.com
A. D. Khalimonenko, Cand. Eng., Associate Prof., Dept. of Mechanical Engineering, e-mail: Khalimonenko_AD@pers.spmi.ru
P. V. Shishkin, Cand. Eng., Associate Prof., Dept. of Transport and Technological Processes and Machines, e-mail: shishkinp@mail.ru

Реферат

An analysis of methods for crushing chips when processing difficult-to-cut materials was carried out. The process of cutting workpieces from austenitic steels is considered based on preliminary local cryogenic action on the surface being processed with the creation of a strengthened zone with a fine-grained structure. A model for the implementation of local cryogenic effects on the processed surfaces of workpieces has been constructed. The dimensional parameters of the hardened zone with a fine-grained structure have been determined, which helps ensure stable segmentation and crushing of drain chips, as well as achieving high quality of machined surfaces of the workpiece after applying a preliminary cryogenic effect. The influence of cryogenic exposure on the processing of austenitic steels is shown.

Ключевые слова Austenitic steel, turning, chip formation, surface roughness, processing quality, local cryogenic exposure, liquid nitrogen
Библиографический список

1. Kumar A., Sharma R., Kumar S., Verma P. A review on machining performance of AISI 304 steel. Materials Today: Proceedings. 2021. Vol. 56, Iss. 6. pp. 2945–2951. DOI: 10.1016/j.matpr.2021.11.003
2. Milyuts V. G., Tsukanov V. V., Pryakhin E. I., Nikitina L. B. Development of manufacturing technology for high-strength hull steel reducing production cycle and providing high-quality sheets. Journal of Mining Institute. 2019. Vol. 239. p. 536. DOI: 10.31897/PMI.2019.5.536
3. Ermakov S. B., Ermakov B. S., Vologzhanina S. A., Sleptsov O. I. Investigation of material properties for cryogenic products, produced by additive manufacturing techniques. Metallurgist. 2023. Vol. 67, Iss. 5-6. pp. 644–651. DOI: 10.1007/s11015-023-01552-x
4. Pryakhin E. I., Sharapova D. M. Understanding the structure and properties of the heat affected zone in welds and model specimens of high-strength low-alloy steels after simulated heat cycles. CIS Iron and Steel Review. 2020. Vol. 19. pp. 60–65.
5. Kukharova T. V., Ilyushin Y. V., Asadulagi M.-A. M. Investigation of the OA-300M electrolysis cell temperature field of metallurgical production. Energies. 2022. Vol. 15, Iss. 23. 9001. DOI: 10.3390/en15239001
6. Gorbunov O. I., Maksarov V. V., Olt Yu. Automation and control of the chip breaking process of the processed material of the austenitic class under preliminary cryogenic action. Metalloobrabotka. 2009. No. 3 (51). pp. 48–54.
7. Karabulut Ş., Güllü A., Yilmaz B. A review of the chip breaking methods for continuous chips in turning. Journal of Manufacturing Processes. 2019. Vol. 49. pp. 50–69. DOI: 10.1016/j.jmapro.2019.10.026
8. Pacella M. A new low-feed chip breaking tool and its effect on chip morphology. The International Journal of Advanced Manufacturing Technology. 2019. Vol. 104, Iss. 1-4. pp. 1145–1157. DOI: 10.1007/s00170-019-03961-2
9. Khrustaleva I. N., Lyubomudrov S. A., Larionova T. A., Brovkina Ya. Yu. Improving the efficiency of technological preparation for production of components for manufacture of mineral resource complex equipment. Zapiski Gornogo instituta. 2021. Vol. 249. pp. 417–426. DOI: 10.31897/PMI.2021.3.11
10. Artamonov E. V., Vasiliev D. V., Chernyshov M. O. Chip breaking during automated cutting of difficult-to-machine steels by means of complex application of chip-breaking tool and hightemperature embrittlement. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. 2020. Vol. 24 (1). pp. 8–22. DOI: 10.21869/2223-1560-2020-24-1-8-22
11. Schwarze M., Rüger C., Georgi O., Rentzsch H. et al. Actuator and process development for vibration assisted turning of steel. Advances in Transdisciplinary Engineering. 2021. Vol. 15. pp. 64–69. DOI: 10.3233/ATDE210013
12. Tej Patel, Sahitya Yadav, Zeel Raj, Prassan Shah et al. Analysis of machining performance of AISI 420 stainless steel using conventional and ultrasonic assisted turning. Materials Today: Proceedings. 2019. Vol. 26. pp. 2200–2207. DOI: 10.1016/j.matpr.2020.02.478
13. Yingshuai Xu, Zhihui Wan, Ping Zou, Qinjian Zhang. Experimental study on chip shape in ultrasonic vibration–assisted turning of 304 austenitic stainless steel. Advances in Mechanical Engineering. 2019. Vol. 11, Iss. 8. DOI: 10.1177/1687814019870896
14. Kim Jun-Hwan, Kim Eun-Jung, Lee Choon-Man. A study on the heat affected zone and machining characteristics of difficult-to-cut materials in laser and induction assisted machining. Journal of Manufacturing Processes. 2020. Vol. 57, Iss. 5. pp. 499–508. DOI: 10.1016/j.jmapro.2020.07.013
15. Zhu J.-N., Zhu W., Borisov E., Hermans M. et al. Effect of heat treatment on microstructure and functional properties of additively manufactured NiTi shape memory alloys. Journal of Alloys and Compounds. 2023. Vol. 967. 171740. DOI: 10.1016/j.jallcom.2023.171740
16. Bezyazychnyi V., Szcerek M. Thermal processes research development in machine-building technology. Journal of Mining Institute. 2018. Vol. 232. pp. 395-400. DOI: 10.31897/PMI.2018.4.395
17. Stampfer B., Bachmann J., Gauder D., Böttger D. et al. Modeling of surface hardening and roughness induced by turning AISI 4140 QT under different machining conditions. Procedia CIRP. 2022. Vol. 108, Iss. 1-2. pp. 293–298. DOI: 10.1016/j.procir.2022.03.050
18. Bazhin V. Y., Issa B. Influence of heat treatment on the microstructure of steel coils of a heating tube furnace. Journal of Mining Institute. 2021. Vol. 249. pp. 393–400. DOI: 10.31897/PMI.2021.3.8
19. Volokitina I., Siziakova E., Fediuk R., Kolesnikov A. Development of a thermomechanical treatment mode for stainless-steel rings. Materials. 2022. Vol. 15, Iss. 14. 4930. DOI: 10.3390/ma15144930

20. Arzoo M. Z., Hassan M., Gupta N. A comparison study between conventional and cryogenic machining. Innovations in Mechanical Engineering. 2022. pp. 329–337. DOI: 10.1007/978-981-16-7282-8_22
21. Che Hassan Che Haron, Shalina Sheik Muhamad, Jaharah A. Ghani. A review on future implementation of cryogenic machining in manufacturing industry. Progress in Industrial Ecology An International Journal. 2018. Vol. 12. Iss. 3. pp. 260–283. DOI: 10.1504/PIE.2018.10018040
22. Quanxin Jiang, Virgínia M. Bertolo, Vera Popovich, Jilt Sietsma et al. Microstructure-based cleavage modelling to study grain size refinement and simulated heat affected zones of S690 high strength steel. Engineering Fracture Mechanics. 2022. Vol. 267. Iss. 19. 108432. DOI: 10.1016/j.engfracmech.2022.108432
23. Vologzhanina S. A., Ermakov S. B., Ermakov B. S., Sleptsov O. I. Study of properties of materials for cryogenic purpose articles obtained by additive technologies. Metallurg. 2023. No. 5. pp. 67–72.
24. Mayer P., Kirsch B., Müller C., Hotz H. et al. Deformation induced hardening when cryogenic turning. CIRP Journal of Manufacturing Science and Technology. 2018. Vol. 23. pp. 6–19. DOI: 10.1016/j.cirpj.2018.10.003
25. Hotz H., Kirsch B., Zhu Tong, Smaga M. et al. Surface layer hardening of metastable austenitic steel e Comparison of shot peening and cryogenic turning. Journal of Materials Research and Technology. 2020. Vol. 9. Iss. 6. pp. 16410–16422. DOI: 10.1016/j.jmrt.2020.11.109
26. Aurich J. C., Patrick M., Benjamin K., Eifler D. et al. Characterization of deformation induced surface hardening during cryogenic turning of AISI 347. CIRP Annals - Manufacturing Technology. 2014. Vol. 63. Iss. 1. pp. 65–68. DOI: 10.1016/j.cirp.2014.03.079
27. Wang Bo, Hong Chuanshi, Winther G., Christiansen T. L. et al. Deformation mechanisms in meta-stable and nitrogen-stabilized austenitic stainless steel during severe surface deformation. Materialia. 2020. Vol. 12. 100751. DOI: 10.1016/j.mtla.2020.100751
28. Vologzhanina S., Igolkin A., Peregudov A., Baranov I. et al. Effect of the deformation degree at low temperatures on the phase transformations and properties of metastable austenitic steels. Obrabotka Metallov. 2022. Vol. 24. Iss. 1. pp. 73–86. DOI: 10.17212/1994-6309-2022-24.1-73-86
29. Maksarov V. V., Nguyen V. D., Efimov A. E., Brigadnov I. A. Technological support of the quality of operational surfaces of a workpiece made of austenitic steels. Metalloobrabotka. 2023. No. 1 (133). pp. 47–54. DOI: 10.25960/mo.2023.1.47
30. Ershov D. Y., Lukyanenko N., Zlotnikov E. G. Dynamic properties of technological drive operating in acceleration mode. Smart Innovation, Systems and Technologies. 2022. Vol. 232. pp. 323–333. DOI: 10.1007/978-981-16-2614-6_28
31. Pompeev K. P., Timofeev D. Yu. Precision dimensional analysis in CAD design of reliable technologies. IOP Conference Series: Earth and Environmental. 2018. Vol. 194. Iss. 2. 022028. DOI: 10.1088/1755-1315/194/2/022028
32. Keksin A. I., Sorokopud N. I., Zakirov N. N. Peculiarities of abrasive finishing of surfaces of parts made of aluminium alloy of АМts grade in magnetic field. International Journal of Engineering, Transactions C: Aspects. 2024. Vol. 37. Iss. 06. pp. 1098–1105. DOI: 10.5829/ije.2024.37.06c.06
33. Yu Su, Guoyong Zhao, Yugang Zhao, Jianbing Meng et al. Multi-objective optimization of cutting parameters in turning AISI 304 austenitic stainless steel. Metals - Open Access Metallurgy Journal. 2020. Vol. 10. Iss. 2. 217. DOI: 10.3390/met10020217
34. V. Durga Prasad Rao, Sk. R. S. Mahaboob Ali, Sk. M. Z. M. Saqheed Ali, V. Navya Geethika. Multiobjective
optimization of cutting parameters in CNC turning of stainless steel 304 with TiAlN nano coated tool. Materials Today: Proceedings. 2018. Vol. 5. Iss. 12. pp. 25789–25797.
35. Kuntoglu M., Acar O., Gupta M. K., Saglam H. et al. Parametric optimization for cutting forces and material removal rate in the turning of AISI 5140. Machines. 2021. Vol. 9. Iss. 90. pp. 1–21. DOI: 10.3390/machines9050090

Полный текст статьи Technological support of workpiece surface quality based on local cryogenic impact during processing of austenitic steels
Назад