Журналы →  Chernye Metally →  2024 →  №9 →  Назад

Technological strength properties and workability of materials
Название Causes of accelerated failure of excavator bucket teeth crowns when operating in Arctic regions
DOI 10.17580/chm.2024.09.06
Автор B. S. Ermakov, S. A. Vologzhanina, S. B. Ermakov, O. V. Shvetsov
Информация об авторе

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

B. S. Ermakov, Dr. Eng., Head of the Materials Resource Laboratory, e-mail: ermakov_bs@spbstu.ru

S. B. Ermakov, Leading Engineer of the Scientific and Technical Complex "New Materials and Technologies"
O. V. Shvetsov, Cand. Eng., Deputy Head of the Materials Resource Laboratory

 

Empress Catherine II Saint Petersburg Mining University, St. Petersburg, Russia
S. A. Vologzhanina, Dr. Eng., Prof., Dept. of Materials Science and Technology of Art Products, e-mail: vologzhanina_sa@pers.spmi.ru

Реферат

The mining industry is gradually moving to the Arctic region characterized by permafrost and permafrost soils. Excavation of rocks in these regions is hampered by increased rock strength due to ice freezing of rock pieces after stripping works and requires a new approach to the production of quick-change tools for excavator and loader buckets. The paper analyzes the causes of accelerated failure of excavator bucket crowns after operation in winter in the northern regions of the country; it is shown that the main causes of their accelerated failure are casting defects and insufficient cold resistance of crown material. Hot foundry cracks and large non-metallic inclusions are the initiators of accelerated failure, fatigue cracks and cold brittle cracks develop on their basis during operation. Insufficient cold resistance of steel grades used for these regions and their heat treatment modes have been confirmed, which leads to the development of brittle fracture cracks. It is established that in order to increase the serviceability of excavator crown metal operating in cold climate conditions it is necessary to modify the chemical composition of steel aimed at increasing its cold resistance while maintaining the level of strength and hardness, the main directions of steel composition modification are determined.
The study was supported by the Russian Science Foundation grant No. 24-29-00713, https://rscf.ru/project/24-29-00713/.

Ключевые слова Excavation of hard rocks in cold climates, excavator bucket crown, structural defects of workpieces, mechanisms of wear of working surfaces, ways of modification of the chemical composition of the material
Библиографический список

1. Litvinenko V. S., Petrov E. I., Vasilevskaya D. V., Naumov I. A. et al. Assessment of the role of the state in the management of mineral resources. Journal of Mining Institute. 2023. Vol. 259. pp. 95–111.
2. Litvinenko V. Foreword: Sixty-year Russian history of Antarctic sub-glacial lake exploration and Arctic natural resource development. Geochemistry. 2020. Vol. 80. Iss. 3. 125652. DOI: 10.1016/j.chemer.2020.125652
3. Vakulin A. A. Fundamentals of Geocryology. Tyumen : TomGU, 2011. 220 p.
4. Alkova E. L., Panishev S. V., Maksimov M. S. Evaluation of the relative excavation difficulty index of blasted massif in permafrost zone conditions. Uspekhi sovremennogo estestvoznaniya. 2020. No. 11. pp. 32–38.
5. Meshkov A. A., Kazanin O. I., Sidorenko A. A. Improving the efficiency of the technology and organization of the longwall face move during the intensive flat-lying coal seams mining at the Kuzbass mines. Journal of Mining Institute. 2021. Vol. 249, Iss. 5. pp. 342–350. DOI: 10.31897/PMI.2021.3.3
6. Avdeev A. N., Bolotnev A. Yu., Unagaev E. I. Distribution of stresses in the basic units of quarry excavators and brittle failures of structures. Vestnik IrGTU. 2009. No. 2 (38).
7. Panishev S. V., Alkova E. L., Maksimov M. S. On the assessment of the excavation difficulty index for a freezing blasted rock mass. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2019. No. 3. pp. 31–36. DOI: 10.15372/FTPRPI20190304
8. Sokolov I. S. Methodology for determining the strength properties of frozen soils by static probing: thesis of inauguration of Dissertation … of Doctor of Engineering Sciences. Moscow, 2020. 23 p.
9. Zubov V. P., Phuc L. Q. Development of resource-saving technology for excavation of flat-lying coal seams with tight roof rocks (on the example of the quang ninh coal basin mines). Journal of Mining Institute. 2022. Vol. 257. pp. 795–806. DOI: 10.31897/PMI.2022.72
10. Efimov V. M., Kravtsova O. N., Stepanov A. V., Timofeev A. V. et al. Study of the influence of surfactants on the strength of frozen soils in the permafrost zone of the Republic of Sakha (Yakutia). Arktika i Antarktika. 2017. No. 4. pp. 80–85.
11. Kazanin O. I., Ilinets A. A. Ensuring the excavation workings stability when developing excavation sites of flat-lying coal seams by three workings. Journal of Mining Institute. 2022. Vol. 253, Iss. 1. pp. 41–48. DOI: 10.31897/PMI.2022.1
12. Yue Zhao, Abbas Taheri, Murat Karakus, Zhongwei Chen et al. Effects of water content, water type and temperature on the rheological be haviour of slag-cement and flyash-cement paste backfill. International Journal of Mining Science and Technology. 2020. Vol. 30, Iss. 3. pp. 271–278.
13. Petkova A. P., Ganzulenko O. Yu. Laser marking of non-ferrous metal and alloy products using ultradense barcodes: process features. Tsvetnye metally. 2022. No. 7. pp. 92-97.
14. Bolobov V. I., Batalov A. P., Lykov Yu. V., Bochkov V. S. On the feasibility of manufacturing excavator bucket teeth from 110G13L steel. Development of mineral resources of the North: challenges and solutions: Transactions, 2012. pp. 319–322.
15. Kolokoltsev V. M., Vdovin K. N., Chernov V. P., Feoktistov N. A. et al. Study of the mechanisms of abrasive and impact-abrasive wear of high-manganese steel. Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta imeni G. I. Nosova. 2017. Vol. 15. No. 2. pp. 54–62.
16. Jie Li, Liujie Xu, Yu Feng, Shubo Wu et al. Hardening mechanism of high manganese steel during impact abrasive wear. Engineering Failure Analysis. 2023. Vol. 154. 107716. DOI: 10.1016/j.engfailanal.2023.107716
17. Sleptsov O. I., Kuzmin V. R., Larionov V. P. et al. Cold resistance of materials and structural elements: Results and prospects. Novosibirsk : Nauka, 2005. 290 p.
18. Miladinov M., Sedmak S., Djordjevic B., Sedmak A. et al. Repairing of cracks on tooth gear ring of a bucket-wheel excavator. Procedia Structural Integrity. 2023. Vol. 48. pp. 27–32. DOI: 10.1016/j.prostr.2023.07.106
19. Bolobov V. I., Akhmerov E. V., Rakitin I. V. Influence of the type of rock on the patterns of wear of the tooth crown of an excavator bucket. Gornyi informatsionno-analiticheskiy byulleten. 2022. No. 6-2. pp. 189–204.
20. Petrović A., Momčilović N., Sedmak S. Reliability-based structural analysis of a bucket wheel excavator’s load-bearing steel structure. Procedia Structural Integrity. 2022. Vol. 42. pp. 236–243. DOI: 10.1016/j.prostr.2022.12.029
21. Prysyazhnyuk P., Ivanov O., Matvienkiv O., Marynenko S. et al. Impact and abrasion wear resistance of the hardfacings based on high-manganese steel reinforced with multicomponent carbides of Ti-Nb-Mo-V-C system. Procedia Structural Integrity. 2022. Vol. 36. pp. 130–136. DOI: 10.1016/j.prostr.2022.01.014
22. Olt J., Maksarov V., Efimov A. Improving the quality of critical tractor parts through the dynamic stabilisation of the manufacturing process in regard to CNC machines. Agronomy Research. 2019. Vol. 17. pp. 1146–1154. DOI: 10.15159/AR.19.060
23. Sathishkumar K., Kalaivanan P., Karthick R., Kersone C. Design and analysis of hardness improvement on excavator Bucket Teeth. International Journal of Advance Research and Innovative Ideas in Education. 2017. Vol. 3. Iss. 2. 4572.
24. Rusiński E., Cegiel L., Michalczyk A., Moczko P. et al. Investigation and modernization of buckets of surface mining machines. Engineering Structures. 2015. Vol. 90. pp. 29–37. DOI: 10.1016/j.engstruct.2015.02.009
25. Pobegaylo P. A., Kritsky D. Yu., Gilmashina T. R. Wear of elements of quarry excavators: analysis of the current state of the problem. Gornyi informatsionno-analiticheskiy byulleten. 2021. No. 2. pp. 64–74.
26. Nasonov M. Yu., Lykov Yu. V., Chong D. D. Research of resource and durability of metal structures of excavators after service life expiration. Ugol. 2020. No. 2. pp. 13–17.
27. Mukherjee A., Biswas Ch., Majumder A., Barik M. Comparative study of wear characteristics of selected structural materials. Materials Today: Proceedings. 2022. Vol. 67. P. 4. pp. 536–542. DOI: 10.1016/j.matpr.2022.07.257
28. Widder L., Rojacz H., Adam K., Kuttner A. et al. Abrasive wear protection in material handling: Mechanism-based combination of lab-experiments for optimal material selection. Wear. 2023. Vol. 530–531. 204979. DOI: 10.1016/j.wear.2023.204979
29. Ruzibaev A. N., Zhuraev D. D., Khasanova Sh. I., Abdiev B. K. et al. Study of wear of bucket teeth of quarry excavators. International scientific review of problems and prospects of modern science and education. LVI International correspondence scientific and practical conference: collection of scientific articles. Boston, USA, 2019. pp. 13–16.
30. Kazakov A. A., Lyubochko D. A., Ryaboshuk S. V., Chigintsev L. S. Study of the nature of non-metallic inclusions in steel using an automatic particle analyzer. Chernye Metally. 2014. No. 4. pp. 37-41.
31. Galata L. A., Ermakov B. S., Kancev R. G., Karzina J. S. The influence of microstructure quality on the efficiency of bucket teeth of career excavators. Key Engineering Materials. 2023. Vol. 941. pp. 107–112.
32. Fernández J. E, Vijande R., Tucho R., Rodrıguez J. et al. Materials selection to excavator teeth in mining industry. Wear. 2001. Vol. 250. Iss. 1-12. pp. 11–18. DOI: 10.1016/S0043-1648(01)00624-X
33. Barret Ch. S. Massalsky T. Structure of Metals: translated from English. Moscow : Metallurgiya, 1984. 685 p.
34. Kolokoltsev V. M., Vdovin K. N., Sinitsky E. V., Feoktistov N. A. Assessment of operational durability and modeling of manufacturing technology of the casting “excavator bucket tooth“. Vestnik MGTU imeni G. I. Nosova. 2015. No. 4. pp. 61–64.
35. Zuev B. Y., Zubov V. P., Fedorov A. S. Application prospects for models of equivalent materials in studies of geomechanical processes in underground mining of solid minerals. Eurasian Mining. 2019. Vol. 1. pp. 8–12.
36. GOST 15150–69. Machines, instruments and other industrial products. Modifications for different climatic regions. Categories, operating, storage and transportation conditions as to environment climatic aspects influence. Introduced: 01.01.1971.

Language of full-text русский
Полный текст статьи Получить
Назад