Журналы →  Chernye Metally →  2024 →  №9 →  Назад

Metallurgy
Название Development of a method for producing hot reducing gas and blast furnace smelting technology therewith
DOI 10.17580/chm.2024.09.03
Автор V. V. Kochura, R. V. Kurtenkov
Информация об авторе

Empress Catherine II Saint Petersburg Mining University, St. Petersburg, Russia ; Donetsk National Technical University, Donetsk, Russia

V. V. Kochura, Cand. Eng., Associate Prof., Dept. of Metallurgy1, Head of the Dept. of Ore-Thermal Processes and Low-Waste Technologies2, e-mail: v.v.kochura@bk.ru


Empress Catherine II Saint Petersburg Mining University, St. Petersburg, Russia
R. V. Kurtenkov, Cand. Eng., Associate Prof., Dept. of Metallurgy, e-mail: kurtenkov_rv@pers.spmi.ru

Реферат

The article is devoted to the topical topic of ferrous metals production, which is a continuation of many scientific works of the Department of Metallurgy, considering the possibility of developing energy-efficient and resource-saving technologies in the field of metallurgy of ferrous and non-ferrous metals, as well as issues of reducing the environmental burden on the environment. Based on the research performed, a method for carrying out blast furnace smelting with the injection of synthetic hot reducing gas (SHRG) obtained from blast furnace gas and non-scarce and relatively inexpensive coals was proposed. Joint injection of pulverized coal fuel (PCF) into the hearth in an amount of 120-138 kg/t of cast iron and hot gas with a flow rate of 300-550 m3/t of cast iron will reduce the consumption of skip coke to 288-322 kg/t of cast iron (by 17-36 %), consumption of equivalent fuel (ce) from scarce energy resources (coke + pulverized coal) will be 458-482 kg/t of cast iron. Increasing the consumption of injected hot water gas to 600-900 m3/t of cast iron reduces the consumption of skip coke to 350-388 kg/t of cast iron (68-105 kg/t of cast iron; 15-21 %) and the consumption of standard fuel from scarce energy carriers (coke) to 388 -426 kg/t of cast iron (154-191 kg/t of cast iron; 26-33 %), which corresponds to the best world analogues in the ironmaking. The use of SHG obtained from blast furnace gas as a reducing gas for the production of pig iron will significantly increase the performance of blast furnace smelting, reduce CO2 emissions into the atmosphere and improve the environmental situation in the metallurgical regions of the country.

Ключевые слова Coke, natural gas, pulverized coal fuel, hot reducing gas, iron, productivity, blast furnace
Библиографический список

1. Trushko V. L., Trushko O. V. Integrated development of iron ore deposits based on competitive underground geotechnologies. Zapiski Gornogo instituta. 2021. Vol. 250 (4). pp. 569–577. DOI: 10.31897/PMI.2021.4.10
2. Pelevin A. E. Technologies of iron ore beneficiation in Russia and ways to improve their efficiency. Zapiski Gornogo instituta. 2022. Vol. 256. pp. 579–592. DOI: 10.31897/PMI.2022.61
3. Aleksandrova T. N., Chanturia A. V., Kuznetsov V. V. Mineralogical and technological features and patterns of selective destruction of ferruginous quartzites of the Mikhailovskoye deposit. Zapiski Gornogo instituta. 2022. Vol. 256. pp. 517–526. DOI: 10.31897/PMI.2022.58
4. Fokina S. B., Petrov G. V., Sizyakova E. V., Andreev Yu. V. Process solutions of zinc-containing waste disposal in steel industry. International Journal of Civil Engineering and Technology. 2019. Vol. 10, Iss. 1. pp. 2083–2089.
5. Koteleva N., Kuznetsov V., Vasilyeva N. A simulator for educating the digital technologies skills in industry. Part one. Dynamic simulation of technological processes. Applied Sciences. 2021. Vol. 11, Iss. 22. pp. 1–19. DOI: 10.3390/app112210885
6. Litvinenko V., Bowbriсk I., Naumov I., Zaitseva Z. Global guidelines and requirements for professional competencies of natural resource extraction engineers: implications for ESG principles and sustainable development goals. Journal of Cleaner Production. 2022. Vol. 338. pp. 130–530. DOI: 10.1016/j.jclepro.2022.130530
7. Litvinenko V. S. Correction to: digital economy as a factor in the technological development of the mineral sector. Natural Resources Research. 2020. Vol. 29, Iss. 3. pp. 1521–1541. DOI: 10.1007/s11053-019-09568-4
8. Kozyrev B. A., Sizyakov V. M., Arsentyev V. A. Principles of rational processing of red mud with the use of carboxylic acids. Non-ferrous Мetals. 2022. Vol. 2. pp. 30–34.
9. Lebedev A. B., Musinova P. V. Formation of the strength of pelletized multiphase dicalcium silicate sinter. Chernye Metally. 2022. No. 5. pp. 40–46.
10. Khalifa A. A., Bazhin V. Yu., Ustinova Ya. V., Shalabi M. E. Kh. Study of the kinetic features of the process of obtaining pellets from red mud in a hydrogen flow. Zapiski Gornogo instituta. 2022. Vol. 254. pp. 261–270. DOI: 10.31897/PMI.2022.18
11. Feshchenko R. Yu., Erokhina O. O., Litavrin I. O., Ryaboshuk S. V. Improvement of oxidation resistance of arc furnace graphite electrodes. Chernye Metally. 2023. No. 7. pp. 31–36.
12. Bazhin V. Yu. Structural modification of petroleum needle coke by adding lithium on calcining. Coke and Chemistry. 2015. Vol. 58. No. 4. pp. 138–142. DOI: 10.3103/S1068364X15040043
13. Tovarovsky I. G. Understanding the processes and development of blast furnace smelting technology: Monograph. Dnepropetrovsk : ZhURFOND, 2015. 912 p.
14. Shatokha V. The Sustainability of the iron and steel industries in Ukraine: Challenges and opportunities. J. Sustain. Metall. 2016. No. 2. pp. 106–115. DOI: 10.1007/s40831-015-0036-2
15. Yaroshevsky S. L., Kochura V. V., Kuznetsov A. M. et al. Efficiency and resources of pulverized coal technology for iron smelting. Metall i lityo Ukrainy. 2018. No. 9-10. pp. 5–19.
16. Zinyagin G. A., Dorofeev G. A. Production technology and quality of direct reduced iron. Clean steel: from ore to rolled products-2020: collection of articles of the 1st International Conference. Moscow, 2020. pp. 11–59.
17. Zhang W., Zhang J., Xue Z. et al. Unsteady analyses of the top gas recycling oxygen blast furnace. ISIJ International. 2016. Vol. 56, Iss. 8. pp. 1358–1367. DOI: 10.2355/isijinternational.ISIJINT-2016-090
18. Helle M., Saxen H. Operation windows of the oxygen blast furnace with top gas recycling. ISIJ International. 2015. Vol. 55, Iss. 10. pp. 2047–2055. DOI: 10.2355/isijinternational.ISIJINT-2015-083
19. Ariyama T., Sato M., Nouchi T., Takahashi K. Evolution of blast furnace process toward reductant flexibility and carbon dioxide mitigation in steel Works. ISIJ International. 2016. Vol. 56, Iss. 10. pp. 1681–1696. DOI: 10.2355/isijinternational.ISIJINT-2016-210
20. Shevelev L. N., Brodov A. A. Energy saving, increasing energy efficiency and reducing greenhouse gas emissions in the ferrous metallurgy of Russia. Chernaya metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2018. No. 2. pp. 3–6.
21. Quader A., Shamsuddin A., Dawal S. Z., Nukman Y. Present needs, recent progress and future trends of energy-efficient ultra-low carbon dioxide (CO2) steelmaking (ULCOS) program. Renewable and Sustainable Energy Reviews. 2016. Vol. 55. pp. 537–549. DOI: 10.1016/j.rser.2015.10.101
22. Jahanshahi S., Mathieson J. G., Reimink H. Low emission steelmaking. Journal of sustainable metallurgy. 2016. Vol. 3. pp. 185–190.
23. Novitsky E. G., Bazhenov S. D., Volkov A. V. Optimization of methods for cleaning gas mixtures from carbon dioxide (review). Neftekhimiya. 2021. Vol. 61. No. 3. pp. 291–310. DOI: 10.31857/S0028242121030011
24. Soskovets O. N., Shevelev L. N., Shatlov V. A. et al. Application of the “Hot reducing gases” technology to improve the energy efficiency of iron production. Stal. 2014. No. 5. pp. 103–107.
25. Bakhronov H. Sh., Akhmatov A. A., Ganieva S. U., Suyarova Kh. Kh. Cleaning of gas emissions from carbon dioxide. Khimiya i khimicheskaya tekhnologiya. 2019. No. 3. pp. 19–23.
26. Berdnikov V. I., Gudim Yu. A. Chemical reactions during the reduction of iron from oxides in a carbon monoxide environment. Izvestiya vuzov. Chernaya metallurgiya. 2021. Vol. 64. No. 3. pp. 211–213. DOI: 10.17073/0368-0797-2021-3-211-213
27. Tovarovsky I. G., Merkulov A. E. Blast furnace smelting with injection of coal gasification products. Kiev : Naukova dumka, 2016. 200 p.
28. Kozlov A. N. Review of modern trends in the development of solid fuel gasification technologies. Izvestiya Rossiyskoy akademii nauk. Energetika. 2021. No. 1. pp. 130–148.
29. Yaroshevsky S. L., Kochura V. V., Kuznetsov A. M., Shulga I. V. et al. Method of smelting in a blast furnace. Patent Ukraine, No. 141166. Applied: 01.08.2019. Published: 25.03.2020, Bulletin No. 6.
30. Ramm A. N. Modern blast furnace process. Moscow : Metallurgiya, 1980. 303 p.
31. Yaroshevsky S. L. Iron smelting using pulverized coal fuel. Moscow : Metallurgiya, 1988. 176 p.
32. Yaroshevsky S. L., Afanasyeva Z. K., Kuzin A. V. Basic principles of calculation and organization of blast furnace smelting technology with replacement of 30-60% coke with additional fuels (domestic and foreign experience). Creative heritage of B. I. Kitaev. Proceedings of the International scientific and practical conference. February 11–14, 2009, Yekaterinburg: UGTU-UPI, 2009. pp. 138–148.
33. Kurunov I. F. Current state of blast furnace production in China, Japan, South Korea, Western Europe, North and South America. Metallurg. 2015. No. 7. pp. 12–22.
34. Kexin J., Jianliang Z., Chunlin C., Zhengjian L. et al. Operation characteristic of super-large blast furnace slag in China. ISIJ International. 2017. Vol. 57, Iss. 6. pp. 983–988. DOI: 10.2355/isijinternational.ISIJINT-2016-615
35. Production and technology of iron and steel in Japan during 2022. ISIJ International. 2023. Vol. 63, Iss. 6. pp. 951–969. DOI: 10.2355/isijinternational.63.951
36. Katunin V. V., Zinovieva N. G., Ivanova I. M., Petrakova T. M. Key performance indicators of the Russian ferrous metallurgy industry in 2020. Chernaya metallurgiya. Byulleten nauchnotekhnicheskoy i ekonomicheskoy informatsii. 2021. Vol. 77. No. 4. pp. 367–392.

Language of full-text русский
Полный текст статьи Получить
Назад