Journals →  Obogashchenie Rud →  2024 →  #3 →  Back

ArticleName Comprehensive processing of phosphate ores into new types of fused fertilizers
DOI 10.17580/or.2024.03.06
ArticleAuthor Denisova O. V., Karapetyan K. G., Shakhparonova T. S.

Empress Catherine II Saint Petersburg Mining University (St. Petersburg, Russia)

Denisova O. V., Associate Professor, Candidate of Chemical Sciences, Associate Professor,
Karapetyan K. G., Head of Chair, Doctor of Engineering Sciences, Associate Professor,
Shakhparonova T. S., Associate Professor, Candidate of Chemical Sciences, Associate Professor,


This article examines the advantages and disadvantages of industrial processes for converting phosphate ores into new types of fused fertilizers, such as the AVA complex glassy fertilizer. The discussion includes the potential uses of these fertilizers, their production features, and applications for agronomic purposes. Data on the raw material composition are provided. The benefits of producing and using the AVA complex glassy fertilizer are highlighted. Derivatographic studies conducted on the initial charge and glassy products with varying phosphorus and silicon dioxide content were used to establish the sintering and melting temperature ranges. It has been found that the AVA complex glassy fertilizer is partially water-soluble. The kinetics of its dissolution have been studied, revealing a significant dependence on temperature: dissolution rates increase with higher K2O and SiO2 content, but are practically unaffected by the microelement content in the glass. The composition of the AVA fertilizer can be adjusted based on climatic conditions, soil types, and crops cultivated. Phosphate glasses developed from processed phosphate ores are promising materials, enabling the production of environmentally friendly glassy fertilizers and porous glassy sorbents through thermal methods. Gentle crushing without over-grinding is an essential aspect of preparing these brittle glassy fertilizers for agricultural use. Disintegration in vertical vibrating cone crushers appears to be the preferred method. Overall, the use of glassy phosphate fertilizers is an example of comprehensive low-waste utilization of mineral raw materials based on advanced domestic combined technologies.

keywords Phosphate ores, thermophosphates, fused phosphorusmagnesium fertilizers, acid-free fertilizer production methods, thermochemical technologies, complex glassy fertilizers

1. Ibrahim S. S., Yassin K. E., Boulos T. R. Processing of an East Mediterranean phosphate ore sample by an integrated attrition scrubbing/classification scheme (part one). Separation Science and Technology. 2020. Vol. 55, Iss. 5. pp. 967–979.
2. Sizyakov V. M., Kawalla R., Brichkin V. N. Geochemical aspects of the mining and processing of the large-tonne mineral resourses of the Khibinian alkaline massif. Geochemistry. 2020. Vol. 80, Iss. 3. DOI: 10.1016/j.chemer.2019.04.002
3. Cheban A. Yu. Engineering of complex structure apatite deposits and excavating-sorting equipment for its implementation. Zapiski Gornogo Instituta. 2019. Vol. 238. pp. 399–404.
4. Zakharova A. A., Voytekhovsky Yu. L. Methodology for predicting the washability of apatite ores (Kirovsky mine, Kola Peninsula). Obogashchenie Rud. 2022. No. 1. pp. 27–31.
5. Neradovsky Yu. N., Kompanchenko A. A., Bazay A. V., Baybikova Yu. B. Study of the structural and chemical features of fluorapatite of the Khibiny Massif as a potential raw material for processing. Obogashchenie Rud. 2020. No. 4. pp. 14–20.
6. Oljaev D. N., Nurmurodov T. I., Khurramov N. I., Sharipov S. Sh. Effect of mechanochemical treatment of lowgrade phosphorites on the optimal composition of phosphorus fertilizers. Obogashchenie Rud. 2023. No. 3. pp. 16–23.
7. Aleksandrova T. N., Elbendari A. M. Increasing the efficiency of phosphate ore processing using flotation method. Zapiski Gornogo Instituta. 2021. Vol. 248. pp. 260–271.
8. Aleksandrova T., Elbendari A., Nikolaeva N. Beneficiation of a low-grade phosphate ore using a reverse flotation technique. Mineral Processing and Extractive Metallurgy Review. 2020. Vol. 43, Iss. 15. DOI: 10.1080/08827508.2020.1806834
9. Pirimov T. Zh., Namazov Sh. S., Temirov U. Sh., Usanbayev N. Kh. Selective recovery of magnesium compounds from serpentinites of the Arvaten deposit. Obogashchenie Rud. 2023. No. 6. pp. 9–16.
10. Derbunovich N. N. Development of thermophosphate production — the way to rational use of raw materials and environmental improvement. Gornyi Informatsionno-analiticheskiy Byulleten'. 2003. No. 10. pp. 17–20.
11. Derbunovich N. N., Osetrova L. M., Podkhalyuzin V. S. Processing of apatite-francolite ores of the Kovdorsky massif into fused calcium-magnesium phosphates. Khimicheskaya Promyshlennost'. 1987. No. 3. pp. 23–25.
12. Dmitrevsky B. A., Yuryeva V. I. Production of phosphorus-containing and potash fertilizers. St. Petersburg: Khimiya, 1993. 208 p.

13. Pirogov V. I., Galina V. N., Cheplyaev A. I. et al. Complex use of apatite ores from the Kovdorsky deposit for acid-free processing into feed and fluorinated phosphates. Research in the field of production of feed, food and technical phosphates: Proc. of the NIUIF. 1981. Iss. 238. pp. 8–17.
14. Trushnikov V. E. Reception fusible of magnesian phosphates from waste of the trifle of phosphorites and tails of enrichment in large laboratory and skilled electrothermal furnaces. Izvestiya Samarskogo Nauchnogo Tsentra RAN. 2009. Vol. 11, No. 3. pp. 350–355.
15. Mammadova G. M. q., Maharamova L. S. q., Qurbanova A. Q. q. A study of the acquisition of phosphorusmagnesium fertilizers. Sovremennye Nauchnye Issledovaniya i Innovatsii. Elektronnyi Nauchno-prakticheskiy Zhurnal. 2023. No. 3. URL: (accessed: 16.04.2024).
16. Budykina N. P., Kameneva E. E., Lebedeva G. A., Ozerova G. P. Evaluation of the effectiveness of fused phosphorus-magnesium fertilizers. Agrokhimicheskiy Vestnik. 2006. No. 6. pp. 28–30.
17. Kochetkov V. N. Phosphorus-containing fertilizers. Moscow: Khimiya, 1982. 400 p.
18. Kogan V. E., Karapetyan K. G. Polycrystalline and glassy phosphorus-containing fertilizers. St. Petersburg: LEMA, 2015. 150 p.
19. Protsyuk A. P. Physico-chemical bases of obtaining phosphorus-magnesium fertilizers from ores of the Kovdorsky deposit. Doklady AN SSSR. 1982. Vol. 262, No. 4. pp. 936–938.
20. Kozhevnikov A. O., Timchenko A. I., Derbunovich N. N. et al. Production of fused calcium-magnesium phosphates from raw materials of the Kovdor deposit. Khimicheskaya promyshlennost'. 1983. No. 10. pp. 26–28.
21. Barmin I. S., Morozov V. V., Polivanskaia V. V. Improving the technology of mature tailings processing at the Kovdorsky GOK. Izvestiya Vysshikh Uchebnykh Zavedeniy. Gornyi Zhurnal. 2020. No. 5. pp. 56–65.
22. Ashrapov Sh. Sh., Nikolina E. S., Aziev R. G., Derbunovich N. N., Batanova A.M. Phase-structural characteristics and properties of fused phosphates synthesized in the Ca10(PO4)6F2–MgO–SiO2 system. Vestnik Moskovskogo Universiteta. Seriya 2: Khimiya. 1990. Vol. 31, No. 3. pp. 309–313.
23. Wildflush I. R., Tsyganov A. R., Barbasov N. V. Effect of new forms of fertilizers and growth regulators on photosynthetic activities of crops, yield and barley grain quality of feed purpose varieties. Izvestiya Natsionalnoy Akademii Nauk Belarusi. Seriya Agrarnykh Nauk. 2019. Vol. 57, No. 3. pp. 297–307.
24. Goltsman B. M., Yatsenko E. A. Dynamics of foam glass structure formation using glass waste and liquid foaming mixture. Journal of Cleaner Production. 2023. Vol. 426. DOI: 10.1016/j.jclepro.2023.138994
25. Litvinova T. E., Oleynik I. L. Dissolution kinetics of rare earth metal phosphates in carbonate solutions of alkali metals. Zapiski Gornogo Instituta. 2021. Vol. 251. pp. 712–722.
26. Litvinova T., Kashurin R., Zhadovskiy I., Gerasev S. The kinetic aspects of the dissolution of slightly soluble lanthanoid carbonates. Metals. 2021. Vol. 11. DOI: 10.3390/met11111793
27. Shakhparonova T. S., Sobianina D. O., Karapetyan K. G. Development of a dissolution model of a vitreous phosphorus-containing fertilizer concerning interdiffusion applied for calculation of fertilizer doses. Research on Crops. 2021. Vol. 22, No. 2. pp. 279–284.
28. Zubkova O. S., Pyagay I. N., Pankratieva K. A., Toropchina M. A. Development of composition and study of sorbent properties based on saponite. Zapiski Gornogo Instituta. 2023. Vol. 259. pp. 21–29.
29. Vasileva Z. V., Vasekha M. V., Tyulyaev V. S. Evaluation of the efficiency of sorbents for accidental oil spill response in the Arctic waters. Zapiski Gornogo Instituta. 2023. Vol. 264. pp. 856–864.
30. Kazmina O. V., Vereshchagin V. I., Abiyaka A. N. Foam glass-crystalline materials based on natural and manmade raw materials. Tomsk: Publishing House of Tomsk Polytechnic University, 2014. 245 p.
31. Yatzenko E. A. Application of computer technologies for modeling the process of formation of the porous structure of foamed glass. Glass and Ceramics. 2017. Vol. 74, Iss. 7–8. pp. 267–269.
32. Cheremisina O., Litvinova T., Sergeev V., Ponomareva M., Mashukova J. Application of the organic wastebased sorbent for the purification of aqueous solutions. Water. 2021. Vol. 13, Iss. 21. DOI: 10.3390/w13213101
33. Kamenshchikov F. A., Bogomolny E. I. Oil sorbents. Moscow, Izhevsk: R&C Dynamics, 2005. 278 p.
34. Pat. 2181702 Russian Federation.
35. Kogan V. E., Zgonnik P. V., Kovina D. O., Chernyaev V. A. Foam glass and polymer materials: effective oil sorbents. Glass and Ceramics. 2014. Vol. 70, Iss. 11–12. pp. 425–428.
36. Kogan V. E., Sobianina D. O., Zgonnik P. V. The physicochemical bases of oil and oil products absorption by glassy sorbents. Rasayan Journal of Chemistry. 2021. Vol. 14, No. 3. pp. 2006–2016.

Language of full-text russian
Full content Buy