Журналы →  Obogashchenie Rud →  2024 →  №3 →  Назад

BENEFICIATION TECHNOLOGY
Название Methods to increase the yield of ilmenite concentrate in the processing of titanium-containing ores
DOI 10.17580/or.2024.03.02
Автор Pelevin A. E.
Информация об авторе

Ural State Mining University (Ekaterinburg, Russia)

Pelevin A. E., Professor, Doctor of Engineering Sciences, Associate Professor, a-pelevin@yandex.ru

Реферат

This article describes the research on the processing of ilmenitebearing ores and provides recommendations for increasing the yield of ilmenite concentrate. During grinding, it is essential to reduce the over-grinding of ore and gangue minerals to minimize ilmenite losses and to remove larger gangue minerals with the tailings. This can be achieved by using fine screening in closed grinding circuits. If overgrinding of ore and gangue minerals occurs, gravity separators capable of recovering very fine ilmenite particles and removing gangue mineral fines should be used instead of desliming the feed for electric separation. The yield of ilmenite concentrate can be increased by reducing losses of very fine ilmenite particles of –0.04+0.02 mm. Drum corona-electrostatic separators can recover ilmenite particles of this size, provided that the feed contains a minimal amount of dust-sized gangue minerals. Laboratory tests yielded ilmenite concentrates with a titanium dioxide content of 48 %. When processing ores from the Kuranakh and Gusevogorsk deposits, the proportion of the –0.04+0.02 mm particle size class in the ilmenite concentrate ranged from 46.26 to 52.16 %. This result was achieved by replacing the desliming operation with table concentration upstream of the electric separation. For the Bolshoy Seim deposit ore, the proportion of the –0.04+0.02 mm particle size class in the ilmenite concentrate was 27.37 %. This result was obtained through the use of fine screening in closed grinding circuits, which reduced the over-grinding of ore and gangue minerals.

Ключевые слова Ilmenite, grinding, fine screening, desliming, table concentration, electric separation, titanium dioxide content
Библиографический список

1. Sadykhov G. B. Fundamental problems and prospects for the use of titanium raw materials in Russia. Izvestiya Vysshikh Uchebnykh Zavedeniy. Chernaya Metallurgiya. 2020. Vol. 63, No. 3–4. pp. 178–194.
2. Kotova O. B., Ozhogina E. G., Ponaryadov A. V. Technological mineralogy: development of a comprehensive assessment of titanium ores (exemplified by the Pizhemskoye deposit). Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 632–641.
3. Makeyev A. B., Bryanchaninova N. I., Krasotkina A. O. Unique titanium deposits of Timan: Genesis and age issues. Zapiski Gornogo Instituta. 2022. Vol. 255. pp. 275–289.
4. Degodya Е. Yu., Shavakuleva О. P. Elaboration of a technology for production conditional ilmenite concentrate at enrichment of titanium-magnetite ores. Chernaya Metallurgiya. Byulleten' Nauchno-tekhnicheskoy i Ekono-micheskoy Informatsii. 2019. Vol. 75, No. 5. pp. 572–577.

5. Gazaleeva G. I., Shikhov N. V., Sopina N. A., Musketov A. A. Modern trends in the processing of titaniumcontaining ores. Chernaya Metallurgiya. Byulleten' Nauchno-tekhnicheskoy i Ekonomicheskoy Informatsii. 2015. No. 12. pp. 30–36.
6. Grishin I. A., Orekhova N. N., Garkavi M. S., Gorlova O. E. Features of the Ural low-titanium magnetite ore processing. Gornyi Zhurnal. 2019. No. 11. pp. 37–43.
7. Bulatov K. V., Gazaleeva G. I., Mushketov A. A., Sopina N. A. Development of a technology for producing iron concentrate from copper-titanomagnetite ores of the Volkovskoye deposit. Obogashchenie Rud. 2021. No. 5. pp. 27–32.
8. Kornilkov S. V., Dmitriev A. N., Pelevin A. E., Yakovlev A. M. Separate processing of ore at Gusevogorsky deposit. Gornyi Zhurnal. 2016. No. 5. pp. 86–90.
9. Pelevin А. Е., Shigaeva V. N., Vodovozov K. A. Schemes of enrichment of ilmenite-titanomagnetite and hematitemagnetite ores. Gornyi Informatsionno-analiticheskiy Byulleten'. 2023. No. 12–1. pp. 106–119.
10. Zheng X., Du L., Li Sh., Jing Z., Lu D., Jia K., Cadiere K., Peng B., Wang Yu. A novel method for efficient recovery of ilmenite by high gradient magnetic separation coupling with magnetic fluid. Minerals Engineering. 2023. Vol. 202. DOI: 10.1016/j.mineng.2023.108279
11. Kuskov V. B., Lvov V. V., Yushina T. I. Increasing the recovery ratio of iron ores in the course of preparation and processing. CIS Iron and Steel Review. 2021. Vol. 21, No 1. pp. 4–8.
12. Yi F., Chen L., Zeng J. Combinatorial optimization of rotating matrix in centrifugal high gradient magnetic separation. Minerals Engineering. 2023. Vol. 202. DOI: 10.1016/j.mineng.2023.108309
13. Pelevin A. E., Tsypin E. F., Koltunov A. V., Komlev S. G. High-intensity magnetic separators with permanent magnets. Izvestiya Vysshikh Uchebnykh Zavedenii. Gornyi Zhurnal. 2001. No. 4–5. pp. 133–136.
14. Pelevin A. E. Increasing the efficiency of iron ore raw materials beneficiation by separation in an increased magnetic field. Chernye Metally. 2022. No. 1. рр. 31–36.
15. Pelevin A. E., Sytykh N. A. Increased magnetic field induction separators in titanium magnetite ore processing. Obogashchenie Rud. 2020. No. 2. pp. 15–20.
16. Meng L., Gao S., Wei D., Cui B., Shen Y., Song Z. Investigation on the evolution of flow field stability in a spiral separator. Minerals Engineering. 2021. Vol. 141, Iss. 1. DOI: 10.1016/j.mineng.2021.107224
17. Yan X., Wang H., Peng Zh., Hao J., Zhang G., Xie W., He Ya. Triboelectric properties of ilmenite and quartz minerals and investigation of triboelectric separation of ilmenite ore. International Journal of Mining Science and Technology. 2018. Vol. 28, Iss. 2. pp. 223–230.
18. Urvantsev A. I., Shikhov N. V., Zaitsev G. V. Research results and practice of mineral raw material beneficiation by electric separation. Izvestiya Vysshikh Uchebnykh Zavedeniy. Gornyi Zhurnal. 2005. No. 5. pp. 37–51.
19. Zhao X., Meng Q., Zhang Yu., Yuan Zh., Xu Yu., Li L. Surface adsorption investigation of dodecylbenzenesulfonate isopropanolamine a novel collector during flotation separation of ilmenite from titanaugite. Minerals Engineering. 2022. Vol. 180. DOI: 10.1016/j.mineng.2022.107499
20. Meng Q., Du Yu., Yuan Zh., Xu Yu., Zhao X., Li L. Study on the mineral characteristics and separation performances of a low-TiO2. Minerals Engineering. 2022. Vol. 179. DOI: 10.1016/j.mineng.2022.107458
21. Du Yu., Meng Q., Yuan Zh., Li L., Lu J., Wang N. Effect of the adding order of sulfuric acid on the flotation behaviors of ilmenite and titanaugite and its functional mechanism. Minerals Engineering. 2023. Vol. 199. DOI: 10.1016/j.mineng.2023.108116
22. Pelevin A. E., Sytykh N. A. Efficiency of screens and hydrocyclones in closed-cycle grinding of titanomagnetite ore. Gornyi Informatsionno-analiticheskiy Byulleten'. 2022. No. 5. рр. 154–166.
23. Kosoy G. M., Vinnikov A. Ya. Fine hydraulic screening of ground ores on a multi-frequency screen by Kroosh Technologies: in-process testing. Tsvetnye Metally. 2021. No. 6. pp. 10–15.
24. Yushina T. I., Chanturia E. L., Dumov A. M., Myaskov A. V. Modern trends of technological advancement in iron ore processing. Gornyi Zhurnal. 2021. No. 11. pp. 75–83.
25. Palaniandy S., Halomoan R., Ishikawa H. TowerMill circuit performance in the magnetite grinding circuit — The multi-component approach. Minerals Engineering. 2019. Vol. 133 pp. 10–18.
26. Pelevin A. E. Production of hematite concentrate from hematite–magnetite ore. Gornyi Informatsionno-analiticheskiy Byulleten'. 2020. No. 3–1. рр. 422–430.
27. Xue Z., Wang Yu., Zheng X., Lu D., Sun Z., Jing Z. Mechanical entrainment study by separately collecting particle deposit on matrix in high gradient magnetic separation. Minerals Engineering. 2022. Vol. 178. DOI: 10.1016/j.mineng.2022.107435
28. Du Yu., Meng Q., Yuan Zh., Liu Zh., Zhao X. New insights into the impact of acid surface pretreatment on the flotation of three classified ilmenites. Applied Surface Science. 2022. Vol. 599 (1–2). DOI: 10.1016/j.apsusc.2022.153945
29. Hu Yu., Ye G., Zuo Q., Xiao W., Kang X., Liang X., Zhu S. Activation of ilmenite flotation by sodium chlorite in the sodium oleate system. Separation and Purification Technology. 2023. Vol. 305. DOI: 10.1016/j.seppur.2022.122506
30. Du Yu., Meng Q., Yuan Zh., Klein B., Li L., Lu J. Effect of acid surface pretreatment on the floatability difference between ilmenite and titanaugite pre-absorbed by flotation reagents. Applied Surface Science. 2023. Vol. 613. DOI: 10.1016/j.apsusc.2022.156121
31. Guiral-Vega J. S., Pérez-Barnuevo L., Bouchard J., Ure A., Poulin É., Du Breuil C. Particle-based characterization and process modeling to comprehend the behavior of iron ores in drum-type wet low-intensity magnetic separation. Minerals Engineering. 2024. Vol. 206. DOI: 10.1016/j.mineng.2024.108509
32. Guiral-Vega J. S., Pérez-Barnuevo L., Bouchard J., Ure A., Poulin É., Du Breuil C. Particle-based characterization and classification to evaluate the behavior of iron ores in drum-type wet low-intensity magnetic separation. Minerals Engineering. 2022. Vol. 186. DOI: 10.1016/j.mineng.2022.107755
33. Doroshenko M. V., Bashlykova T. V. Technological properties of minerals. Moscow: Teploenergetik, 2007. 296 p.
34. Vaisberg L. A., Kononov O. V., Ustinov I. D. Fundamentals of geometallurgy. St. Petersburg: Russkaya Kollektsiya, 2020. 376 p.

Language of full-text русский
Полный текст статьи Получить
Назад