Journals →  Gornyi Zhurnal →  2024 →  #6 →  Back

ArticleName Geodynamic zoning of rockburst-prone deposits using digital terrain models
DOI 10.17580/gzh.2024.06.06
ArticleAuthor Rasskazov I. Yu., Usikov V. I., Fedotova Yu. V.

Khabarovsk Federal Research Center, Far Eastern Branch, Russian Academy of Sciences, Khabarovsk, Russia

I. Yu. Rasskazov, Director, Doctor of Engineering Sciences, Corresponding Member of the Russian Academy of Sciences
V. I. Usikov, Leading Researcher, Candidate of Economic Sciences,
Yu. V. Fedotova, Leading Researcher, Candidate of Engineering Sciences


In view of the favorable business environment owing to the tin price advance in the world, RUSOLOVO is setting about rehabilitation of one of the largest Soviet plants in nonferrous metallurgy—Solnechny GOK engaged in the mining and processing activities in the Komsomolsky ore province. Continuation of mineral extraction meant deeper level mining. Complicated geological and geomechanical conditions of mining required undertaking of integrated research including geodynamic zoning which involved studies into the actual terrain features and comparison of the results with the geological survey data. To that end, the digital terrain models based on the 30-m SRTM elevation data were used. With the help of free GIS Microdem and QGIS softwares, the models were visualized as elevation maps in light and shadow, color or shades of grey, as well as in the form of stereoscopic anaglyph maps. The analysis of this information helped i dentify separate rock masses enclosing mineral deposits and tectonic blocks inside them. The extremely complex tectonic structure of the Komsomolsky ore province, and the numerous recently active faults governed, first, the alternating horizontal stresses in rock masses and, second, the diversity of geodynamic regimes even in close-spaced areas. This is valid, for instance, for rock masses hosting the Pereval and Festival deposits occurring under equal structural control.

keywords Tectonic blocks, geodynamic zoning, rock mass, rockburst hazard, digital terrain models, geoinformation systems, stress–strain behavior

1. On the state and use of mineral resources of the Russian Federation in 2021. State report. Moscow : VIMS, 2022. 626 p.
2. Rasskazov I. Yu. Rock pressure control in the Far Eastern mines. Moscow : Gornaya kniga, 2008. 329 p.
3. Ilin A. M. Prediction and prevention of rock bursts in metal and nonmetal industries. Bezopasnost truda v promyshlennosti. 1986. No. 10. pp. 43–45.
4. Available at: (accessed: 15.04.2024).
5. Regulatory documents in the area of activity of the Federal Environmental, Industrial and Nuclear Supervision Service. Instruction on rockburst hazard assessment in metalliferous and nonmetallic deposits. Issue 8. Series 06. Mining Safety and Supervision and Authorization Activity Papers. Moscow : ZAO NTTs PB, 2016. 52 p.
6. Batugina I. M., Petukhov I. M. Geodynamic zoning of mineral deposits in underground mine planning and operation. Moscow : Nedra, 1988. 166 p.
7. Ufimtsev G. F. Mountains of the Earth : Climatic types and neo-orogenesis phenomena. Moscow : Nauchnyi mir, 2008. 352 p.
8. Naumova V. V., Eremenko V. S., Zagumennov A. A., Patuk M. I. Scientific portal Current state and prospects of development. Geoinformatika. 2023. No. 3. pp. 33–43.
9. Zakharov V. N., Kaplunov D. R., Fedotenko V. S. Digitalization of mining engineering systems for integrated development of mineral resources: Principles and trends. Gornyi Zhurnal. 2023. No. 2. pp. 4–8.
10. Byzov L. M., Sankov V. A., Kenzin M. Yu., Ulyanov S. A. Landscape evolution modeling of the normal-fault scarps (Baikal rift system): new experience. Geoinformatika. 2023. No. 3. pp. 55–62.
11. Kozyrev A. A., Zhuravleva O. G., Zhukova S. A. Seismicity variations in space and time in the area of the Saamy fault, Khibiny Massif, Kola Peninsula. Gornyi Zhurnal. 2023. No 1. pp. 79–84.
12. Kuzmin S. B., Lopatkin D. A. Geoinformational support of transboundary cooperation in the Baikal Region as a case-study of assessment of hazardous geomorphological processes. Geoinformatika. 2020. No. 1. pp. 42–59.
13. Farr T. G., Rosen P. A., Caro E., Crippen R., Duren R. et al. The Shuttle Radar Topography Mission. Reviews of Geophysics. 2007. Vol. 45, Iss. 2. RG2004. ID 2005RG000183.
14. Digital elevation data. 2022. Available at: (accessed: 14.04.2024).
15. 30-Meter SRTM Tile Downloader. Available at: (accessed: 15.04.2024).
16. Schowengerdt R. A., Glass C. E. Digitally processed topographic data for regional tectonic evaluations. GSA Bulletin. 1983. Vol. 94, No. 4. pp. 549–556.
17. Haruyama S., Ohokura H., Simking T., Ramphin R. Geomorphological zoning for flood inundation using satellite data. GeoJournal. 1996. Vol. 38, No. 3. pp. 273–278.
18. Zakharov A., Zakharova L. Applications of satellite radar interferometry for monitoring of oil / gas production and transportation areas. ROGTEC: Russian Oil and Gas Technologies. 2006. No. 5. pp. 58–67.
19. Girija R. R., Mayappan S. Mapping of mineral resources and lithological units: a review of remote sensing techniques. International Journal of Image and Data Fusion. 2019. Vol. 10, Iss. 2. pp. 79–106.
20. Lan T., Zhang H., Li S., Batugina I., Batugin A. Application and development of the method of geodynamic zoning according to geodynamic hazard forecasting at coal mines in China. IOP Conference Series Earth and Environmental Science. 2019. Vol. 221. ID 012088.
21. Lazos I., Chatzipetros A., Pavlides S., Pikridas Ch., Bitharis S. Tectonic crustal deformation of Corinth Gulf, Greece, based on primary geodetic data. Acta Geodynamica et Geomaterialia. 2020. Vol. 17, No. 4. pp. 413–424.
22. Gorbunov S. V., Makiev Yu. D., Malyshev V. P. Prediction technologies for natural and induced emergencies. Strategiya grazhdanskoy zashchity: problemy i issledovaniya. 2011. Vol. 1, No. 1(1). pp. 43–53.
23. Ioffe A. I., Kozhurin A. I. Active tectonics and geoecological zoning of the Moscow region. Byulleten Moskovskogo obshchestva ispytateley prirody. 1997. Vol. 72, Iss. 5. pp. 31–35.
24. Rotanova I. N., Koshkarev A. V., Medvedev A. A. Application of remote sensing data for digital elevation modeling in regional spatial data infrastructures. Vychislitelnye tekhnologii. 2014. Vol. 19, No. 3. pp. 38–47.
25. Onikhimovskiy V. V., Gavrilov V. I. Tin content of the Far East of the USSR. Khabarovsk, 1985. 280 p.
26. Utkin V. P. Shearing dislocations, magmatism and mineralization. Moscow : Nauka, 1989. 165 p.
27. Khanchuk A. I. (Ed.). Geodynamics, magmatism and metallogeny in the east of Russia. In two volumes. Vladivostok : Dalnauka, 2006. 981 p.
28. Saksin B. G., Rasskazov I. Yu., Shevchenko B. F. Principles of integrated analysis of modern stresses and strains in the outer crust of the Amurian Plate. Journal of Mining Science. 2015. Vol. 51, Iss. 2. pp. 243–252.
29. SRTM30 Documentation. National Aeronautics and Space Administration. Available at: (accessed: 15.04.2024).
30. Rasskazov I. Yu., Saksin B. G., Petrov V. A., Shevchenko B. F, Usikov V. I. et al. Present day stress–strain state in the upper crust of the Amurian Lithosphere Plate. Izvestiya, Physics of the Solid Earth. 2014. Vol. 50, No. 3. pp. 444–452.
31. Usikov V. I. The 3D relief models and structure of the Earth’s upper crust in the Amur region. Russian Journal of Pacific Geology. 2011. Vol. 5, No. 6. pp. 495–508.
32. MICRODEM: Open-source GIS with a focus on Geomorphometry. 2023. Available at: (accessed: 16.03.2024).
33. Zytner I. Ya., Shuvalov V. F. Geological map and map of pre-Quaternary minerals. Sheet M-53-XI. Geological map and map of minerals of the USSR. Lower Amur Series. Scale 1:200000. Moscow : Gosgeoltekhizdat, 1959.
34. Kasatkin S. A. Geodynamics of origination of ore structural control at the Festival deposit in the Komsomolsky ore province : Dissertation of Candidate of Geologo-Mineralogical Sciences. Vladivostok, 2011. 150 p.

Language of full-text russian
Full content Buy